Robinets d'arrêt à soupape automatisés

BOA-H Mat E

Livret technique

Copyright / Mentions légales Livret technique BOA-H Mat E Tous droits réservés. Les contenus de ce document ne doivent pas être divulgués, reproduits, modifiés ou communiqués à des tiers sauf autorisation écrite du constructeur. Ce document pourra faire l'objet de modifications sans préavis. © KSB SE & Co. KGaA, Frankenthal 16/08/2019

Sommaire

Robinets de régulation / Robinets de mesure	. 4
Robinets d'arrêt à soupape automatisés suivant DIN / EN	4
BOA-H Mat E	
Applications principales	4
Fluides	4
Conditions de service	. 4
Matériaux du corps de robinet	4
Conception	. 4
Avantages	
Information produit	
Documents complémentaires	
Tableau pression–température	
Temps de manœuvre	
Pressions de fermeture max. autorisées	
Caractéristiques techniques	
Matériaux	. 9
Dimensions et poids	10
Instructions d'installation	
Schémas de connexion	12
Liste des résistances	14

Robinets de régulation / Robinets de mesure

Robinets d'arrêt à soupape automatisés suivant DIN / EN

BOA-H Mat E

Applications principales

- Installations de chauffage à eau chaude
- Systèmes de climatisation
- Alimentation de chaudières
- · Circulation de chaudière
- Industrie chimique
- Procédés industriels
- · Installations de récupération de la chaleur
- Sucreries

Fluides

- Eau surchauffée
- Vapeur saturée
- · Huile thermique
- Liquides n'attaquant pas chimiquement et mécaniquement les matériaux du robinet

Conditions de service

Caractéristiques

Paramètre	Valeur	
Pression nominale	PN 16/25	
Diamètre nominal	DN 20 - 150	
Pression max. autorisée [bar]	25	
Température min. autorisée [°C]	≥ -10	
Température max. autorisée [°C]	≤ +350	

Détermination sur la base du tableau pression-température (⇒ page 6)

Matériaux du corps de robinet

Tableau des matériaux disponibles

Matériau	Code matériau	Température limite	
EN-GJS-400-18-LT	5.3103	≤ 350 °C	

Conception

Construction

Robinet d'arrêt à soupape :

- À passage direct et à siège droit
- Cône de réglage ≤ DN 100
- Cône plat ≥ DN 125
- Joints chevron PTFE chargés ressort ≤ 250 °C
- Garniture de presse-étoupe en graphite ≤ 450 °C
- Brides suivant DIN EN 1092-2 Type 21
- Taux de fuite A
- Revêtement extérieur : bleu RAL 5002

Actionneurs (données techniques de la configuration de base) :

Actionneurs à 3 points

Tension d'alimentation : 230 V AC

Retour de position : 2 contacteurs de fin de course (arrêt déclenché par contacteur de fin de course en sens de

fermeture et en sens d'ouverture Tension d'alimentation : 24 V AC/DC Retour de position : 0-10 V

 Poursuite du fonctionnement après panne d'alimentation électrique suivant les caractéristiques de fonctionnement (actionneur 24 V)

Variantes

Robinet d'arrêt à soupape :

- Cône avec joint PTFE (≤ 200 °C)
- Autres usinages des brides
- Peinture pour hautes températures gris d'aluminium
- · Certificat suivant spécification client

Actionneurs:

- Sécurité anti-défaillance pour actionneurs 24 V
- Réchauffage enceinte de moteur électrique
- Autres tensions de service sur demande
- Autres actionneurs tels que AUMA, sur demande

Avantages

- Haute fiabilité et résistance chimique grâce aux pièces internes de qualité supérieure en acier inox (1.4571)
- Risque de fuite réduit grâce au joint de chapeau à double emboîtement
- Différentes versions d'étanchéité au droit de la tige: joints chevron PTFE sans entretien (< 250 °C) ou garniture de presse-étoupe resserrable en graphite (450 °C)
- Actionneur électrique à commande à 3 points disponible en différentes tailles jusqu'à 14 kN

Information produit

Information produit selon le règlement n° 1907/2006 (REACH)

Informations selon le règlement européen sur les substances chimiques (CE) n° 1907/2006 (REACH) voir http://www.ksb.com/reach.

Informations produit suivant la Directive Équipement sous pression 2014/68/UE (DESP)

Les robinets sont conformes aux prescriptions de sécurité de la Directive européenne sur les équipements de pression 2014/68/ UE (DESP), Annexe I, pour fluides des groupes 1 et 2.

Informations produit suivant la Directive 2014/34/UE (ATEX)

Version ATEX sur demande.

Documents complémentaires

Remarques / Documents

Document	Référence
Courbes de débit	7150.4
Notice de service BOA-CVE H	7525.81
Notice de service actionneurs électriques	7525.83
Texte descriptif BOA-H Mat E	7135.521

Tableau pression-température

Pression d'essai et pression de service

PN	Matériau	Essai de pression corps Essai d'étanchéité amont/ aval		Pression de service autorisée [bar] ¹⁾²		oar] ¹⁾²⁾		
		À l'eau						
		Essais P10 et P11 suivant DIN EN 12266-1 Essai P12, débit de fuite A suivant DIN EN 12266-1		[°C]				
		[bar]	[bar]	-10 à +120	200	250	300	350
16	EN-GJS-400-18-LT	24	Δρ	16	14,7	13,9	12,8	11,2
25	EN-GJS-400-18-LT	37,5	Δρ	25	23	21,8	20	17,5

Temps de manœuvre

Temps de manœuvre [s]

DN	Course [mm]	Actionneur	Actionneur			
		EA-C 20 à 80 24 V / 230 V	EA-C 140 230 V	EA-C 140 24 V		
20	7,5	15,0	-	-		
25	7,5	15,0	-	-		
32	11	22,0	-	-		
40	12	24,0	-	-		
50	13,5	27,0	-	-		
65	17	34,0	26,2	37,8		
80	20,5	41,0	31,5	45,6		
100	25,5	51,0	39,2	56,7		
125	33	66,0	50,8	73,3		
150	38	76,0	58,5	84,4		

¹⁾ 2) Les températures intermédiaires peuvent être interpolées de façon linéaire.

Sollicitation statique

Pressions de fermeture max. autorisées

Étanchéité au droit de la tige par joints chevron PTFE

Pressions de fermeture en cas d'entrée du fluide dans le cône contre le sens de fermeture et avec p2 = 0 bar Valeurs [bar]

DN	Course	Valeur Kvs	Actionneur (1	orces de manœuv	re)	
			EA-C 20	EA-C40	EA-C80	EAC-140
	[mm]	[m³/h]	(2 kN)	(4,5 kN)	(8 kN)	(14 kN)
20	7,5	8,3	25,0	-	-	-
25	7,5	13	22,9	-	-	-
32	11	19,9	13,7	25,0	-	-
40	12	27,1	8,3	25,0	-	-
50	13,5	42	4,8	15,9	25,0	-
65	17	75,1	2,2	9,0	18,4	25,0
80	20,5	116,7	1,1	5,6	12,0	22,9
100	25,5	172,3	-	3,3	7,4	14,6
125	33	270	-	1,8	4,5	9,1
150	38	393	-	1,1	2,9	6,2

Étanchéité au droit de la tige par garniture de presse-étoupe en graphite

Pressions de fermeture en cas d'entrée du fluide dans le cône contre le sens de fermeture et avec p2 = 0 bar Valeurs [bar]

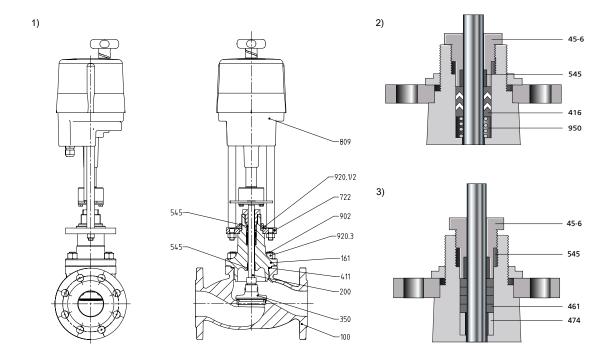
DN	Course	Valeur Kvs	Actionneur (forces de manœuv	re)	
			EA-C 20	EA-C40	EA-C80	EAC-140
	[mm]	[m³/h]	(2 kN)	(4,5 kN)	(8 kN)	(14 kN)
20	7,5	8,3	24,5	-	-	-
25	7,5	13	15,7	25,0	-	-
32	11	19,9	9,3	25,0	-	-
40	12	27,1	5,6	22,3	-	-
50	13,5	42	3,2	14,3	25,0	-
65	17	75,1	1,0	7,8	17,3	25,0
80	20,5	116,7	0,4	4,9	11,3	22,2
100	25,5	172,3	-	2,9	7,1	14,2
125	33	270	-	1,5	4,2	8,9
150	38	393	-	0,9	2,8	6,1

Caractéristiques techniques

Caractéristiques techniques du robinet d'arrêt à soupape

Caractéristiques techniques BOA-H Mat E

Paramètre	Valeur
Pression nominale	PN 16, PN 25
Courbes caractéristiques du robinet	Ouverture / Fermeture
Taux de fuite	Taux de fuite A suivant DIN EN 12266-1, essai P12
Pression autorisée	16 bar, 25 bar
Raccords à brides	PN 16 et PN 25 suivant DIN EN 1092-2
Température du fluide	-10 à +350 °C


Caractéristiques techniques actionneurs

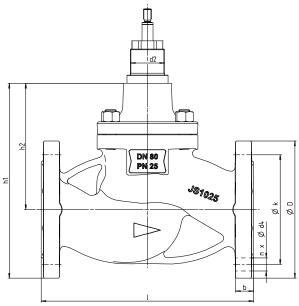
Caractéristiques techniques actionneurs à 3 points

Paramètre		Valeur
Alimentation électrique	Tension d'alimentation	230 V AC ± 10 % 24 V AC/DC ± 10 %
	Puissance absorbée max.	100 VA
Caractéristiques de fonctionnement	Force de manœuvre max.	EA-C 20 : 2 kN EA-C 40 : 4,5 kN EA-C 80 : 8 kN EA-C 140 : 14 kN
	Vitesse de manœuvre	EA-C 2080 : 0,5 mm/s EA-C 140 : 230 V ~ 0,45 mm/s ; 24 V ~ 0,65 mm/s
Entrées de signal	Entrée binaire	230 V AC/24 V AC
Degré de protection suivant EN 60529		IP65
Conditions ambiantes	Température ambiante	-20 à +60 °C
	Température de stockage	-20 à +80 °C
	Humidité	5 à 95 % rH
Dimensions	Voir	
Raccordement électrique		Raccord sur la carte ≤ 2,5 mm²

Matériaux

III. 1: Plans en coupe

1)	Robinet d'arrêt à soupape automatisé		
2	2)	Joints chevron en PTFE		
3)	Garniture de presse-étoupe en graphite		


Tableau des matériaux disponibles

Repère	Désignation	Matériau	Code matériau
100	Corps	EN-GJS-400-18-LT	5.3103
161	Couvercle de corps	EN-GJS-400-18-LT	5.3103
200	Tige	X20Cr13	1.4021+QT
350	Cône	X20Cr13	1.4021+QT
411	Joint de couvercle	Acier CrNi-graphite	-
416	Joints chevron	PFTE carbone	-
45-6	Vis de presse-étoupe	X5CrNi18-10	1.4301
461	Garniture de presse-étoupe	Graphite	-
474	Bague de serrage	X5CrNi18-10	1.4301
545	Coussinet	Sint A50	-
722	Bride d'entraînement	Acier	-
809	Actionneur	-	-
902	Goujon	CK 35 V	-
920.1	Écrou hexagonal	Acier zingué	-
920.2	Écrou à encoches	Acier zingué	-
920.3	Écrou hexagonal	C35	-
950	Ressort	X5CrNi18-10	1.4301

Dimensions et poids

Cotes / poids robinet d'arrêt à soupape BOA-H Mat P

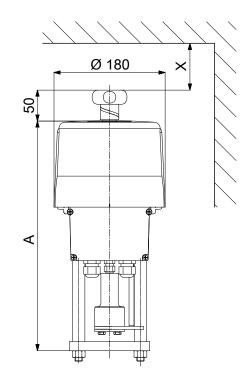
III. 2: BOA-H Mat E sans actionneur

Dimensions / Poids

PN	DN	I	h ₁	h ₂	d ₂	D	b	k	n	d ₄	[kg]
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
16	20	150	153,5	101,0	M39	105	16	75	4	14	6,3
	25	160	164,5	107,0	M39	115	16	85	4	14	6,9
	32	180	216,0	146,0	M39	140	18	100	4	19	10,4
	40	200	226,0	151,0	M39	150	18	110	4	19	11,6
	50	230	227,0	144,5	M39	165	20	125	4	19	13,8
	65	290	272,5	180,0	M50	185	20	145	4	19	22,3
	80	310	284,0	184,0	M50	200	22	160	8	19	28,4
	100	350	328,0	218,0	M50	220	24	180	8	19	38,4
	125	400	384,5	259,5	M50	250	26	210	8	19	60,5
	150	480	403,5	261,0	M50	285	26	240	8	23	83,0
25	20	150	153,5	101,0	M39	105	16	75	4	14	6,3
	25	160	164,5	107,0	M39	115	16	85	4	14	6,9
	32	180	216,0	146,0	M39	140	18	100	4	19	10,4
	40	200	226,0	151,0	M39	150	18	110	4	19	11,6
	50	230	227,0	144,5	M39	165	20	125	4	19	13,8
	65	290	272,5	180,0	M50	185	20	145	8	19	22,3
	80	310	284,0	184,0	M50	200	22	160	8	19	32,4
	100	350	335,5	218,0	M50	235	24	190	8	23	42,4
	125	400	394,5	259,5	M50	270	26	220	8	28	67,5
	150	480	411,0	261,0	M50	300	26	250	8	28	91,5

Cotes de raccordement suivant norme

Dimensions face-à-face: DIN EN 558/1, ISO 5752/1


Brides: DIN EN 1092-2, type de bride 21-2

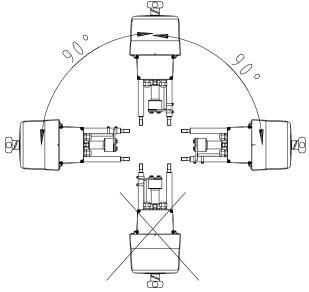
Portée de joint : DIN EN 1092-2, forme B

Cotes / poids actionneurs électriques EA-C 20 à EA-C 140

1)

III. 3: 1) Actionneur vue latérale ; 2) Actionneur avec espace de démontage

Actionneur	Force de manœuvre			3 points 24 V AC/ DC	3 points 24 V AC/DC		
	[N]	[mm]	[mm]	[kg]	[kg]		
EA-C 20	2000	425	120	6,0	7,0		
EA-C 40	4500	425	120	6,0	7,0		
EA-C 80	8000	455	120	9,0	10,0		
EA-C 140	14000	520	120	10,0	10,0		


2)

Instructions d'installation

- En standard, la circulation du fluide dans les robinets d'arrêt à soupape se fait dans le sens indiqué par la flèche moulée sur le corps. Le changement du sens d'écoulement est autorisé, mais il réduit le débit max. indiqué.
- Recommandation: mise en place d'un filtre en amont du robinet d'arrêt à soupape. Ainsi, la sécurité de fonctionnement du robinet d'arrêt à soupape augmente.

Positions de montage :

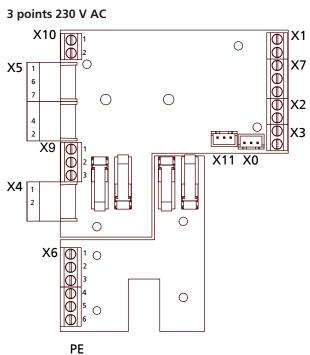
III. 4: Positions de montage actionneur

Schémas de connexion

Utilisation des bornes EA-C 20 à 140

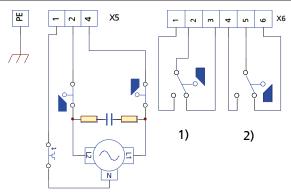
3 points 24 V AC avec boîte à bornes

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	\perp		RJ-45 TTL	ouche
	1	1	_ ↓			↑↓	↑↓			1	1			1	1	1	_ ↑ ↓	↑↓	↑↓	_ ↑ ↓		1				ĭ
+0(2) - 10 V	+0(4) - 20 mA	GND	+0(2) - 10 V	+0(4) - 20 mA	GND		Charge max. 100 mA à 24 V DC		Z Z AC/I V AC V AC		L (24 V AC/DC)	N (24 V AC/DC)	21-40 V DC / 100 mA	+0(2) - 10 V	+0(4) - 20 mA	GND	(option)	(option)	(option)	(option)	L (voir plaque signalétique)	N (voir plaque signalétique)	PE	(option)		
	\triangle			$^{\otimes}$		(9		(D)		(•	(E)	@			Œ	Ð	(D		J		\otimes	(L)	M
<u> </u>							()			Œ	9														


Dans le cas de la commande à 3 points, seules les bornes dans les colonnes ®, ® et ① sont actives !

Légende

A	Entrée consigne	0	Ouvert
B	Recopie de position active	(J)	Tension d'alimentation
©	Signalisation de défaut sans potentiel (optionnel)	(K)	Connexion bus de terrain
0	Commande binaire (standard 24 V AC/DC)	(L)	Communication PC
(E)	Signal absence de tension	M	Mise en service
(Ē)	Alimentatoin (non régulé, 21 - 40 V DC)	N	Séparé galvaniquement 1 kV
©	Retour capteur	0	Capteur processus
H	Fermé	®	Contacteur de fin de course contact libre de potentiel



3 points 230 V AC

III. 5: Utilisation des bornes sur la carte

	465 2011165 541 14 641 16
X1	Câblage interne
X2	Câblage interne
X3	Câblage interne
X4	Potentiomètre 1
X5/1	Neutre
X5/2	Phase moteur pour ouvrir
X5/4	Phase moteur pour fermer
X5/6 et X5/7	Thermorupteur comme contact libre de potentiel
X6	Contacteurs de fin de course additionnels
X7	Non utilisé
X8	Résistance chauffante
X9	Potentiomètre 2
PE	Conducteur de protection, raccord au corps

Utilisation des bornes alimentation électrique Utilisation des bornes contacteur de fin de course additionnel

	1)	Fermé	2)	Ouvert
ı	٠,		-,	0 4.10.1

Liste des résistances

Les informations de cette liste des résistances sont basées sur nos expériences, les listes Dechema et les indications des constructeurs. Les contraintes de corrosion dépendent fortement des conditions de service, des températures et de la concentration. L'usure hydroabrasive dans des fluides chargés de matières solides n'a pas été prise en considération. Par conséquent, les informations de cette liste sont données à titre indicatif. En aucun cas, elles ne peuvent donner lieu à des réclamations au titre de la garantie.

Légende

Symbol e	Explication
1	Normalement, les matériaux exposés à ce fluide ne sont pas attaqués.
×	Les matériaux sont attaqués. Le robinet ne peut être utilisé.
0	Les matériaux / le robinet peuvent / peut être utilisé(s) uniquement sous certaines conditions. Nous consulter en précisant les conditions de fonctionnement, telles que la concentration, la température, la valeur pH et la composition chimique.

Liste des résistances eau³⁾

Fluides	
Eau saumâtre ⁴⁾	×
Eau de service ⁴⁾	1
Eau incendie	✓
Eau chlorée (≤ 0,6 mg/kg)	✓
Eau déionisée (eau déminéralisée) ⁵⁾	0
Eau distillée ⁵⁾	0
Eau d'alimentation de chaudière	1
Eau chaude	1
Eau surchauffée	✓
Condensat	✓
Eau de refroidissement exempte d'huile	✓
Eau de refroidissement contenant de l'huile	✓
Eau ozonée (≤ 0,5 mg/kg)	✓
Eau pure	✓
Eau de mer	×
Eau de battitures ⁴⁾	0
Eau brute ⁴⁾	✓
Eau partiellement déminéralisée ⁵⁾	0
Eau entièrement dessalée ⁵⁾	0
Eaux usées urbaines ⁴⁾⁶⁾	1
Eaux usées industrielles ⁴⁾⁷⁾	1

Liste des résistances huiles (teneur en aromates 5 mg/kg)

✓
✓
✓
1
1
1

Fluides	
Huile de lin	✓
Émulsion huile/eau ⁴⁾	✓
Carburant aviation	✓
Essence	1
Kérosène	✓

Liste des résistances fluides frigoporteur

Fluides	
Eau ammoniacale (≤ 30 %, ≤ 25 °C)	✓
Glycol (éthylène glycol)	✓
Propylène glycol	✓
Mélange eau-glycol (20 % ≤ c ≤ 50 %, ≤ 90 °C)	1
Saumure réfrigérante inorganique, ph 7,5	1

Liste des résistances huiles thermiques

Fluides	
Huiles thermiques synthétiques	✓
Huiles thermiques à base minérale	1

Liste des résistances acides

Fluides	
Acide chlorhydrique	×
Acide sulfurique (pur, technique, concentré)	×
Acide sulfureux	×
Acide gras	×
Acide nitrique	×

Liste des résistances détergents

Fluides	
Lessive pour lavage de bouteilles (p. ex. P3) \leq 80 °C ⁴⁾	0
Lessive pour nettoyage de métaux ≤ 80 °C ⁴⁾	0

Liste des résistances vapeur

Fluides	
Vapeur saturée	✓

Liste des résistances divers

Fluides	
Soude caustique (≤ 50 %, ≤ 50 °C)	0
Gaz naturel	1
Air comprimé contenant de l'huile	1
Chlore sec (≤ 30 °C)	1
Ammoniac	1
Butane (gaz liquéfié)	✓
Glycérine aqueuse	1
Dioxyde de carbone gazeux	1
Dioxyde de carbone (solution aqueuse)	×

- 3) Critères généraux d'évaluation pour les matériaux non alliés utilisés pour l'eau : pH > 7, chlorures (Cl-) < 150 mg/kg, chlore (Cl) < 0,6 mg/kg. Les facteurs suivants sont également importants : la dureté, la teneur en dioxyde de carbone (CO₂), en oxygène (O₂) et en substances dissoutes. Nous consulter si les valeurs limites ne peuvent être respectées.
- 4) Sans matières solides
- 5) Uniquement utilisable si la technique de l'installation et la qualité de l'eau sont conformes à la directive VdTÜV 1466 ou VDI 2035. De plus, une valeur pH ≥ 9,5 et une teneur en oxygène ≤ 0,02 mg/l sont recommandées.
- 6) À traitement biologique
- 7) Non corrosives, non abrasives

