Dry-installed Volute Casing Pump

KWP

Bearing Brackets: P16ax to P20sx

Installation/Operating Manual

Legal information/Copyright

Installation/Operating Manual KWP
Original operating manual
All rights reserved. The contents provided herein must neither be distributed, copied, reproduced, edited or processed for any other purpose, nor otherwise transmitted, published or made available to a third party without the manufacturer's express written consent.
Subject to technical modification without prior notice.

Contents

Glossary 6
1 General 7
1.1 Principles 7
1.2 Installation of partly completed machinery 7
1.3 Target group. 7
1.4 Other applicable documents 7
1.5 Symbols 7
1.6 Key to safety symbols/markings 8
2 Safety 9
2.1 General 9
2.2 Intended use 9
2.3 Personnel qualification and training 9
2.4 Consequences and risks caused by non-compliance with this manual 10
2.5 Safety awareness 10
2.6 Safety information for the operator/user 10
2.7 Safety information for maintenance, inspection and installation 10
2.8 Unauthorised modes of operation 11
2.9 Explosion protection 11
2.9.1 Marking 11
2.9.2 Temperature limits 11
2.9.3 Monitoring equipment. 12
2.9.4 Operating limits 12
3 Transport/Storage/Disposal 13
3.1 Checking the condition upon delivery 13
3.2 Transport 13
3.3 Storage/preservation 15
3.4 Return to supplier. 15
3.5 Disposal 16
4 Description of the Pump (Set). 17
4.1 General description 17
4.2 Product information 17
4.2.1 Product information as per Regulation No. 1907/2006 (REACH) 17
4.3 Designation 17
4.4 Name plate. 19
4.5 Design details. 19
4.6 Materials 20
4.7 Installation types 21
4.8 Configuration and function. 22
4.9 Noise characteristics 23
4.10 Scope of supply 23
4.11 Dimensions and weights 23
5 Installation at Site 24
5.1 Safety regulations. 24
5.2 Checks to be carried out prior to installation 24
5.3 Installing the pump set 24
5.3.1 Installation on a foundation 25
5.4 Piping 26
5.4.1 Connecting the piping 26
5.4.2 Permissible forces and moments at the pump nozzles. 27
5.4.3 Auxiliary connections. 29
5.5 Enclosure/insulation 30
5.6 Checking the coupling alignment 30
5.7 Aligning the pump and motor 32
5.7.1 Motors with adjusting screw 32
5.7.2 Motors without adjusting screw 33
5.8 Electrical connection 34
5.8.1 Setting the time relay 35
5.8.2 Connecting the motor 35
5.8.3 Earthing 35
5.9 Checking the direction of rotation 36
6 Commissioning/Start-up/Shutdown 37
6.1 Commissioning/Start-up 37
6.1.1 Prerequisites for commissioning/start-up 37
6.1.2 Filling in the lubricant 37
6.1.3 Shaft seal 38
6.1.4 Priming and venting the pump 39
6.1.5 Water cooling 40
6.1.6 Final check 40
6.1.7 Start-up 40
6.1.8 Checking the shaft seal 41
6.1.9 Shutdown 42
6.2 Operating limits 43
6.2.1 Ambient temperature 43
6.2.2 Frequency of starts 43
6.2.3 Fluid handled 44
6.3 Shutdown/storage/preservation 45
6.3.1 Measures to be taken for shutdown 45
6.4 Returning to service 45
7 Servicing/Maintenance 47
7.1 Safety regulations 47
7.2 Servicing/Inspection 48
7.2.1 Supervision of operation 48
7.2.2 Inspection work 50
7.2.3 Lubrication and lubricant change of rolling element bearings 51
7.3 Drainage/cleaning 52
7.4 Dismantling the pump set. 53
7.4.1 General information/Safety regulations 53
7.4.2 Preparing the pump set 54
7.4.3 Removing the motor 54
7.4.4 Removing the back pull-out unit 54
7.4.5 Removing the impeller 55
7.4.6 Removing the mechanical seal 56
7.4.7 Removing the discharge cover 56
7.4.8 Dismantling the bearings 56
7.4.9 Removing the suction cover 57
7.5 Reassembling the pump set 57
7.5.1 General information/Safety regulations 57
7.5.2 Preparing the pump casing 58
7.5.3 Preparing and fitting the suction cover 59
7.5.4 Fitting the shaft 59
7.5.5 Fitting the bearing carrier 60
7.5.6 Installing the bearing carrier in the bearing bracket 60
7.5.7 Fitting the discharge cover 61
7.5.8 Installing the mechanical seal 61
7.5.9 Fitting the impeller 63
7.5.10 Installing the back pull-out unit 63
7.5.11 Adjusting the diagonal clearance 64
7.5.12 Fitting the piping 65
7.5.13 Mounting the guard 66
7.5.14 Mounting the motor 66
7.6 Tightening torques 66
7.7 Spare parts stock 67
7.7.1 Ordering spare parts 67
7.7.2 Recommended spare parts stock for 2 years' operation to DIN 24296 67
7.7.3 Interchangeability of pump components 68
8 Trouble-shooting 69
9 Related Documents 71
9.1 General assembly drawing with list of components 71
9.1.1 Pump with bearing bracket P16ax V10 71
9.1.2 Pumps with bearing bracket P16ax V10 (sizes 500-400-0710, 500-400-0713, 500-500-0633, 500-500-0637) 73
9.1.3 Pump with bearing bracket P20sx V10 74
9.1.4 Pump with bearing bracket P20sx V11 76
9.1.5 Shaft seals 77
9.1.6 Shaft seal installation accessories 78
9.1.7 List of components 78
9.2 Recommendations for preparing and processing concrete for grouting the foundation frame 81
10 UK Declaration of Conformity 83
11 Certificate of Decontamination 84
Index 85

Glossary

Absorber recirculation pump

Recirculation pump for handling limestone suspension in a flue gas desulphurisation plant

Back pull-out design

The complete back pull-out unit can be pulled out without having to remove the pump casing from the piping.

Back pull-out unit

Pump without pump casing; partly completed machinery

Certificate of decontamination

A certificate of decontamination is enclosed by the customer when returning the product to the manufacturer to certify that the product has been properly drained to eliminate any environmental and health hazards arising from components in contact with the fluid handled.

Discharge line

The pipeline which is connected to the discharge nozzle

Pool of pumps

Customers/operators' pumps which are purchased and stored regardless of their later use.

Pump

Machine without drive, additional components or accessories

Pump set

Complete pump set consisting of pump, drive, additional components and accessories

1 General

1.1 Principles

This operating manual is valid for the type series and variants indicated on the front cover.
The operating manual describes the proper and safe use of this equipment in all phases of operation.
The name plate indicates the type series and size, the main operating data, the order number and the order item number. The order number and order item number clearly identify the pump set and serve as identification for all further business processes.
In the event of damage, immediately contact your nearest KSB service facility to maintain the right to claim under warranty.

1.2 Installation of partly completed machinery

To install partly completed machinery supplied by KSB refer to the sub-sections under Servicing/Maintenance.

1.3 Target group

This operating manual is aimed at the target group of trained and qualified specialist technical personnel. (\Rightarrow Section 2.3, Page 9)

1.4 Other applicable documents

Table 1: Overview of other applicable documents

Document	Contents
Data sheet	Description of the technical data of the pump (set)
General arrangement drawing / outline drawing	Description of mating dimensions and installation dimensions for the pump (set), weights
Drawing of auxiliary connections	Description of auxiliary connections
Hydraulic characteristic curve	Characteristic curves showing head, NPSH required, efficiency and power input
General assembly drawing ${ }^{1)}$	Sectional drawing of the pump
Sub-supplier product literature ${ }^{1)}$	Operating manuals and other product literature describing accessories and integrated machinery components
Spare parts lists ${ }^{1)}$	Description of spare parts
Piping layout	Description of auxiliary piping
List of components ${ }^{11}$	Description of all pump components
Assembly drawing ${ }^{1)}$	Sectional drawing of the installed shaft seal

For accessories and/or integrated machinery components, observe the relevant manufacturer's product literature.

1.5 Symbols

Table 2: Symbols used in this manual

Symbol	Description
\checkmark	Conditions which need to be fulfilled before proceeding with the step-by-step instructions
\triangleright	Safety instructions
\Rightarrow	Result of an action
\Rightarrow	Cross-references

[^0]| Symbol | Description |
| :---: | :--- |
| 1. | Step-by-step instructions |
| 2. | Note
 Recommendations and important information on how to handle
 the product |
| | |

1.6 Key to safety symbols/markings

Table 3: Definition of safety symbols/markings

Symbol	Description		
\triangle DANGER	DANGER This signal word indicates a high-risk hazard which, if not avoided, will result in death or serious injury.		
WARNING	WARNING This signal word indicates a medium-risk hazard which, if not avoided, could result in death or serious injury.		
CAUTION	CAUTION This signal word indicates a hazard which, if not avoided, could result in damage to the machine and its functions.		Explosion protection
:---			
This symbol identifies information about avoiding explosions in			
potentially explosive atmospheres in accordance with the UK			
regulation titled Equipment and Protective Systems Intended for			
Use in Potentially Explosive Atmospheres Regulations 2016.			

2 Safety

All the information contained in this section refers to hazardous situations. In addition to the present general safety information the action-related safety information given in the other sections must be observed.

2.1 General

- This operating manual contains general installation, operating and maintenance instructions that must be observed to ensure safe operation of the system and prevent personal injury and damage to property.
- Comply with all the safety instructions given in the individual sections of this operating manual.
- The operating manual must be read and understood by the responsible specialist personnel/operators prior to installation and commissioning.
- The contents of this operating manual must be available to the specialist personnel at the site at all times.
- Information and markings attached directly to the product must always be complied with and kept in a perfectly legible condition at all times. This applies to, for example:
- Arrow indicating the direction of rotation
- Markings for connections
- Name plate
- The operator is responsible for ensuring compliance with all local regulations not taken into account.

2.2 Intended use

- The pump (set) must only be operated in the fields of application and within the use limits specified in the other applicable documents. (\Rightarrow Section 1.4, Page 7)
- Only operate pumps/pump sets which are in perfect technical condition.
- Do not operate the pump (set) in partially assembled condition.
- Only use the pump to handle the fluids described in the data sheet or product literature of the pump model or variant.
- Never operate the pump without the fluid to be handled.
- Observe the minimum flow rates indicated in the data sheet or product literature (to prevent overheating, bearing damage, etc).
- Observe the minimum flow rate and maximum flow rate indicated in the data sheet or product literature (to prevent overheating, mechanical seal damage, cavitation damage, bearing damage, etc).
- Do not throttle the flow rate on the suction side of the pump (to prevent cavitation damage).
- Consult the manufacturer about any use or mode of operation not described in the data sheet or product literature.
- Only use the respective impeller types in combination with the fluids described below.

Closed multi-channel impeller	Suitable for the following fluids: (impeller type K)	Contaminated, solids-laden fluids not containing stringy material and containing no or very little entrapped gas

2.3 Personnel qualification and training

All personnel involved must be fully qualified to transport, install, operate, maintain and inspect the machinery this manual refers to.

The responsibilities，competence and supervision of all personnel involved in transport，installation，operation，maintenance and inspection must be clearly defined by the operator．
Deficits in knowledge must be rectified by means of training and instruction provided by sufficiently trained specialist personnel．If required，the operator can commission the manufacturer／supplier to train the personnel．

Training on the pump（set）must always be supervised by technical specialist personnel．

2．4 Consequences and risks caused by non－compliance with this manual

－Non－compliance with these operating instructions will lead to forfeiture of warranty cover and of any and all rights to claims for damages．
－Non－compliance can，for example，have the following consequences：
－Hazards to persons due to electrical，thermal，mechanical and chemical effects and explosions
－Failure of important product functions
－Failure of prescribed maintenance and servicing practices
－Hazard to the environment due to leakage of hazardous substances

2．5 Safety awareness

In addition to the safety information contained in this operating manual and the intended use，the following safety regulations shall be complied with：
－Accident prevention，health regulations and safety regulations
－Explosion protection regulations
－Safety regulations for handling hazardous substances
－Applicable standards，directives and laws

2．6 Safety information for the operator／user

－Fit protective equipment（e．g．contact guards）supplied by the operator for hot， cold or moving parts，and check that the equipment functions properly．
－Do not remove any protective equipment（e．g．contact guards）during operation．
－Provide the personnel with protective equipment and make sure it is used．
－Contain leakages（e．g．at the shaft seal）of hazardous fluids handled（e．g． explosive，toxic，hot）so as to avoid any danger to persons and the environment． Adhere to all relevant laws．
－Eliminate all electrical hazards．（In this respect refer to the applicable national safety regulations and／or regulations issued by the local energy supply companies．）
－If stopping the pump does not increase potential risk，fit an emergency－stop control device in the immediate vicinity of the pump（set）during pump set installation．

2．7 Safety information for maintenance，inspection and installation

－Modifications or alterations of the pump（set）are only permitted with the manufacturer＇s prior consent．
－Use only original spare parts or parts／components authorised by the manufacturer．The use of other parts／components can invalidate any liability of the manufacturer for resulting damage．
－The operator ensures that maintenance，inspection and installation are performed by authorised，qualified specialist personnel who are thoroughly familiar with the manual．
－Only carry out work on the pump（set）during standstill of the pump．

- Only perform work on the pump set when it has been disconnected from the power supply (de-energised).
- The pump (set) must have cooled down to ambient temperature.
- Pump pressure must have been released and the pump must have been drained.
- When taking the pump set out of service always adhere to the procedure described in the manual. (\Rightarrow Section 6.3, Page 45)
- Decontaminate pumps which handle fluids posing a health hazard. (\Rightarrow Section 7.3, Page 52)
- As soon as the work has been completed, re-install and re-activate any safetyrelevant devices and protective devices. Before returning the product to service, observe all instructions on commissioning. (\Rightarrow Section 6.1, Page 37)

2.8 Unauthorised modes of operation

Never operate the pump (set) outside the limits stated in the data sheet and in this operating manual.

The warranty relating to the operating reliability and safety of the pump (set) supplied is only valid if the equipment is used in accordance with its intended use.

2.9 Explosion protection

DANGER

Always observe the information on explosion protection given in this section when operating the product in potentially explosive atmospheres.

Pumps/Pump sets must not be used in potentially explosive atmospheres unless marked as explosion-proof and identified as such in the data sheet.

Special conditions apply to the operation of explosion-proof pump sets in accordance with the UK's Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres Regulations 2016.
Especially adhere to the sections in this manual marked with the Ex symbol and the following sections, (\Rightarrow Section 2.9.1, Page 11) to (\Rightarrow Section 2.9.4, Page 12)
The explosion-proof status of the pump is only assured if the pump is used in accordance with its intended use.
Never operate the product outside the limits stated in the data sheet and on the name plate.
Prevent impermissible modes of operation at all times.

2.9.1 Marking

Pump The marking on the pump refers to the pump part only.
Example of such marking:
II 2G Ex h IIC T5-T1 Gb
Refer to the Temperature limits table for the maximum temperatures permitted for the individual pump variants. (\Rightarrow Section 2.9.2, Page 11)
The pump complies with the requirements of type of protection constructional safety "c" to ISO 80079-37.
Shaft coupling An EC manufacturer's declaration is required for the shaft coupling; the shaft coupling must be marked accordingly.
Motor The motor must be considered separately.

2.9.2 Temperature limits

In normal pump operation, the highest temperatures are to be expected at the surface of the pump casing, at the shaft seal and in the bearing areas. The surface temperature at the pump casing corresponds to the temperature of the fluid handled. If the pump is heated in addition, the operator of the system is responsible for observing the specified temperature class and fluid temperature (operating temperature).

The table (\Rightarrow Table 4) lists the temperature classes and the resulting maximum permissible fluid temperatures. The values shown correspond to the theoretical limits. They include only a general safety margin for the mechanical seal. For single mechanical seals, the safety margin required for specific operating conditions and mechanical seal designs may be substantially higher. If operating conditions differ from those stated on the data sheet, or if different mechanical seals are used, the actual safety margin required needs to be determined individually. If in doubt please contact the manufacturer.
The temperature class specifies the maximum permissible temperature at the surface of the pump set during operation.
For the permissible operating temperature of the pump in question refer to the data sheet.

Table 4: Temperature limits

Temperature class to ISO 80079-36	Maximum permissible fluid temperature ${ }^{2)}$
T 1	Maximum $400^{\circ} \mathrm{C}^{3)}$
T 2	$280^{\circ} \mathrm{C}$
T 3	$185^{\circ} \mathrm{C}$
T 4	$120^{\circ} \mathrm{C}$
T 5	$85^{\circ} \mathrm{C}$
T 6	Only after consultation with the manufacturer

Temperature class T5 Based on an ambient temperature of $40^{\circ} \mathrm{C}$ and proper maintenance and operation, compliance with temperature class T 5 is warranted in the area of the rolling element bearings. If the ambient temperature exceeds $40^{\circ} \mathrm{C}$, contact the manufacturer.
Temperature class T6 A special design is required to comply with the requirements of temperature class T6 in the bearing area.
Misuse, malfunctions or non-compliance with the instructions may result in substantially higher temperatures.
If the pump is to be operated at a higher temperature, the data sheet is missing or if the pump is part of a pool of pumps, contact KSB for the maximum permissible operating temperature.

2.9.3 Monitoring equipment

The pump (set) must only be operated within the limits specified in the data sheet and on the name plate.
If the system operator cannot warrant compliance with these operating limits, appropriate monitoring devices must be used.
Check whether monitoring equipment is required to ensure that the pump set functions properly.

Contact KSB for further information about monitoring equipment.

2.9.4 Operating limits

The minimum flow rates indicated in $(\Rightarrow$ Section 6.2.3.1, Page 44) refer to water and water-like fluids handled. Longer operating periods with these fluids and at the flow rates indicated will not cause an additional increase in the temperatures at the pump surface. However, if the physical properties of the fluids handled are different from water, it is essential to check whether an additional heat build-up may occur and if the minimum flow rate must therefore be increased. The calculation formula in (\Rightarrow Section 6.2.3.1, Page 44) can be used to check whether an additional heat build-up may lead to a dangerous temperature increase at the pump surface.

[^1]
3 Transport/Storage/Disposal

3.1 Checking the condition upon delivery

1. On transfer of goods, check each packaging unit for damage.
2. In the event of in-transit damage, assess the exact damage, document it and notify KSB or the supplying dealer and the insurer about the damage in writing immediately.

3.2 Transport

	The pump (set) could slip out of the suspension arrangement Danger to life from falling parts! \triangleright
\triangleright Always transport the pump (set) in the specified position.	
Nevebolt.	
\triangleright Observe the information about weights, centre of gravity and fastening points.	
\triangleright Observe the applicable local accident prevention regulations.	
\triangleright Use suitable, permitted lifting accessories, e.g. self-tightening lifting tongs.	

To transport the pump/pump set or back pull-out unit suspend it from the lifting tackle as shown.

| NOTE |
| :--- | :--- |
| For transporting sizes 800-900-883, 900-900-1133, 900-900-1134, 900-900-1137,
 $900-900-1138$ and $900-900-1139$ use the lifting lugs provided (2 lifting lugs
 M36 $\times 50-20.0,10$ tonnes). |

Fig. 1: Transporting the back pull-out unit

Fig. 2: Transporting the pump

Fig. 3: Transporting the pump (800-900-883, 900-900-1133, 900-900-1134, 900-900-1137, 900-900-1138, 900-900-1139)

Fig. 4: Transporting the pump on a baseplate

Fig. 5: Transporting the pump set on a baseplate

3.3 Storage/preservation

If commissioning is to take place some time after delivery, we recommend that the following measures be taken for pump (set) storage.

	CAUTION
	Damage during storage due to humidity, dirt or vermin Corrosion/contamination of pump (set)! F For outdoor storage cover the pump (set) and accessories with waterproof material and protect against condensation.

	CAUTION
Wet, contaminated or damaged openings and connections Leakage or damage to the pump! Clean and cover pump openings and connections as required prior to putting the pump into storage.	

Store the pump (set) in a dry, protected room where the atmospheric humidity is as constant as possible.
Manually rotate the shaft by $1 / 2$ turn at least once a week, e.g. via the motor fan. If properly stored indoors, the equipment is protected for a maximum of 12 months. New pumps/pump sets are supplied by our factory duly prepared for storage.
For storing a pump (set) which has already been operated, observe the instructions in (\Rightarrow Section 6.3.1, Page 45) .

3.4 Return to supplier

1. Drain the pump as per operating instructions. (\Rightarrow Section 7.3, Page 52)
2. Flush and clean the pump, particularly if it has been used for handling noxious, explosive, hot or other hazardous fluids.
3. If the pump has handled fluids whose residues could lead to corrosion damage in the presence of atmospheric humidity or could ignite upon contact with oxygen, the pump must also be neutralised, and anhydrous inert gas must be blown through the pump to ensure drying.
4. Always complete and enclose a certificate of decontamination when returning the pump. Indicate any safety measures and decontamination measures taken. (\Rightarrow Section 11, Page 84)

NOTE
If required, a blank certificate of decontamination can be downloaded from the following web site: www.ksb.com/certificate_of_decontamination

3.5 Disposal

| Fluids handled, consumables and supplies which are hot and/or pose a health |
| :--- | :--- |
| hazard |
| Hazard to persons and the environment! |
| \triangleright Collect and properly dispose of flushing fluid and any fluid residues. |
| \triangleright Wear safety clothing and a protective mask if required. |
| \triangleright Observe all legal regulations on the disposal of fluids posing a health hazard. |

1. Dismantle the pump (set).

Collect greases and other lubricants during dismantling.
2. Separate and sort the pump materials, e.g. by:

- Metals
- Plastics
- Electronic waste
- Greases and other lubricants

3. Dispose of materials in accordance with local regulations or in another controlled manner.

4 Description of the Pump (Set)

4.1 General description

- Dry-installed volute casing pump

Pump for handling pre-treated sewage, waste water, all types of slurries without stringy material and pulps up to 5% bone dry with a maximum density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$.

4.2 Product information

4.2.1 Product information as per Regulation No. 1907/2006 (REACH)

For information as per chemicals Regulation (EC) No. 1907/2006 (REACH), see https:// www.ksb.com/ksb-en/About-KSB/Corporate-responsibility/reach/ .

4.3 Designation

Table 5: Designation example

Position																																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
K	W	P	K	8	0	0	-	8	0	0	-	0	9	3	4		G	N	N	G	1	0	P	4	X	3	N	H		5	5	4
See name plate and data sheet \quad See data sheet																																

Table 6: Designation key

Position	Code	Description	
1-3	Pump type		
	KWP	KWP	
4	Impeller		
	K	Channel impeller	
5-17	Size, e.g.		
	800	Nominal suction nozzle diameter [mm]	
	800	Nominal discharge nozzle diameter [mm]	
	0934	Nominal impeller diameter [mm]	
18	Pump casing material		
	D	Noridur	1.4593
	G	Grey cast iron	GJL-250
	H	NORIHARD NH 153	-
	K	Nodular cast iron / CeramikPolySiC	GJS-400-18-LT
19	Impeller material		
	D	Noridur	1.4593
	H	NORIHARD NH 153	-
	K	CeramikPolySiC	-
	M	NORICROM	1.4475
	N	ERN	-
	U	NORIDUR DAS	1.4593
20	Wear plate material / wear ring material		
	D	NORIDUR	1.4593
	H	NORIHARD NH 153	-
	K)	CeramikPolySiC	-
	M	NORICROM	1.4475

[^2]4 Description of the Pump (Set)

Position	Code	Description	
20	N	ERN	-
	U	NORIDUR DAS	1.4593
21	Discharge cover material		
	D	NORIDUR	1.4593
	G	Grey cast iron	GJL-250
	H	NORIHARD NH 153	-
	K	CeramikPolySiC	-
	M	NORICROM	1.4475
22-23	Design version		
	10	10	
	11	11	
24-25	Shaft seal operating mode		
	A	Single mechanical seal in A-type cover	
	CA	Single cartridge seal	
	CBA	Double cartridge seal, with barrier fluid	
	DR	Double mechanical seal in cylindrical cover, with barrier fluid	
	P3	Gland packing (arrangement I = $/ 1 / 2$) for barrier fluid	
	P6	Gland packing (arrangement II = 1/1/3) for barrier fluid	
	P4	Gland packing (arrangement Ila = -/1/3) for flushing liquid	
	TA	Double mechanical seal in A-type cover, unpressurised	
	TS	Double mechanical seal in A-type cover, with barrier fluid	
26	Design		
	-5)	Standard	
	X	Non-standard (BT3D, BT3)	
27-29	Installation type		
	0	Pump only (Fig. 0 bare-shaft pump)	
	3N	Pump, motor, baseplate, non-spacer-type coupling (Fig. 3E)	
	3 NH	Pump, motor, baseplate, spacer-type coupling (Fig. 3E)	
	BH	Close-coupled, horizontal	
	BV	Close-coupled, vertical	
30-32	Motor rating $\mathrm{P}_{\mathrm{N}}[\mathrm{kW}$]		
	055	55	
	132	132	
33	Number of motor poles		

[^3]
4.4 Name plate

Fig. 6: Name plate (example)

1	Type series, size, material	2	Customer-specific information (optional)
3	KSB order and order item number	4	Flow rate
5	Speed	6	Year of construction
7	Head	8	Pump input power or blank
9	Further required information		

4.5 Design details

Design

- Volute casing pump
- Horizontal installation
- Back pull-out design
- Single-stage
- Single-suction

Pump casing

- Radially split volute casing
- Volute casing with integrally cast pump feet
- Pump casing with suction cover (partly with wear plate)
- Single-piece discharge cover

Impeller type

- Closed channel impeller (\Rightarrow Section 2.2, Page 9)
- Back vanes reduce axial thrust.

Bearing assembly

- Oil-lubricated rolling element bearings
- Back pull-out design with axially adjustable pump rotor to adjust the clearance between impeller and wear plate

Bearings used Table 7: Standard bearings

Bearing bracket	Rolling element bearings		
	Pump end $^{(6)}$	Drive end $^{\text {() }}$	Drive end
P16ax	NU 232 EC3	NU 232 EC3	QJ 328-N2 ${ }^{\text {¹ }}$
P20sx	NU 240 E	NJ 238 E	$29340-1^{8)}$

Shaft seal

- Single mechanical seal
- Shaft equipped with replaceable shaft protecting sleeve in the shaft seal area

1

2

Fig. 7: Mechanical seals in conical seal chamber (A-type)

1	Single mechanical seal, balanced, with spring- loaded stationary assembly, bi-directional, for P16ax/P20sx V10	2	Single mechanical seal, balanced, with spring- loaded stationary assembly, bi-directional, for P20sx V11

Drive

- Electric motor connected to the pump via a coupling

4.6 Materials

Example of material designation: DMKM
Table 8: Key to the material designation

Code	Description		
D	Casing material		
		G	GJL-250 ${ }^{\text {9 }}$
		H	NORIHARD NH 153
		D	NORIDUR 1.4593
		K	JS1025/ CeramikPolySiC®
M	Impeller material		
		N	ERN
		D	NORIDUR 1.4593
		U	NORIDUR 1.4593 DAS
		K	CeramikPolySiC®
		M	NORICROM 1.4475

[^4]| Code | Description | |
| :---: | :---: | :---: |
| M | H | NORIHARD NH 153 |
| K | Wear plate material | |
| | N | ERN |
| | H | NORIHARD NH 153 |
| | D | NORIDUR 1.4593 |
| | U | NORIDUR 1.4593 DAS |
| | K^{10} | CeramikPolySiC® |
| M | Discharge cover material | |
| | G | GJL-250 ${ }^{11}$ |
| | H | NORIHARD NH 153 |
| | D | NORIDUR 1.4593 |
| | M | NORICROM 1.4475 |
| | K | CeramikPolySiC® |

The following material combinations can be implemented (not available for all sizes): GNNG, GDNG, DDDD, DUUD, DKKM, DMKM, GHHH, HHHH, KUKK, KKKK

4.7 Installation types

Table 9: Installation types

Installation type	Illustration	Description
Figure 3		Pump set with directly coupled motor

[^5]
4.8 Configuration and function

Fig. 8: Sectional drawing

1	Suction cover	2	Casing/discharge nozzle
3	Discharge cover	4	Shaft
5	Bearing bracket	6	Casing/suction nozzle
7	Impeller	8	Shaft seal
9	Rolling element bearing, pump end	10	Rolling element bearing, motor end

Design The horizontal, non-self-priming, radially split volute casing pump in back pull-out design is designed with an axial fluid inlet and a tangential outlet. The rotor runs in an axially adjustable bearing assembly and is connected to the motor by a shaft coupling.

Function The uniformly rotating impeller of the centrifugal pump transfers mechanical energy to the fluid passing through the pump.

The fluid enters the pump axially via the suction nozzle (6) and is accelerated outward by the rotating impeller (7). In the flow passage of the pump casing the kinetic energy of the fluid is converted into pressure energy. The fluid leaves the pump via the discharge nozzle (2).
The casing is fitted with a replaceable suction cover (1). The diagonal clearance prevents frequent deflection of the clearance flow heading in the direction of the suction nozzle. This ensures a longer service life if solids-laden fluids are handled. Owing to the axially adjustable bearing assembly, the clearance can be set to an optimum width.

The casing is closed by a discharge cover (3). The shaft (4) enters the casing via this cover. A shaft seal (8) provides reliable sealing to atmosphere.

The shaft is supported by oil lubricated rolling element bearings (9 and 10). The bearing bracket (5) is directly connected to the casing.

Sealing The pump is sealed by a shaft seal installed in a conical seal chamber: single mechanical seal

4.9 Noise characteristics

Table 10: Surface sound pressure level $L_{p A}{ }^{12)}$

Rated power input	Pump				
	$\mathbf{4 2 0} \mathbf{~ r p m ~}$	$\mathbf{4 8 0} \mathbf{~ r p m ~}$	$\mathbf{5 8 0} \mathbf{~ r p m ~}$	$\mathbf{7 2 5} \mathbf{~ r p m ~}$	$\mathbf{9 6 0} \mathbf{~ r p m ~}$
PN [kW]	$[\mathrm{dB}]$	$[\mathrm{dB}]$	[dB]	[dB]	[dB]
550 kW	73	76	79	83	87
600 kW	74	76	80	84	88
650 kW	74	77	80	84	88
750 kW	75	78	81	85	90
800 kW	76	78	82	85	90
900 kW	77	79	82	86	-
1000 kW	77	80	83	87	-
1200 kW	79	81	84	-	-
1700 kW	81	84	-	-	-

4.10 Scope of supply

Depending on the model, the following items are included in the scope of supply:

- Pump

Drive

- Surface-cooled IEC frame three-phase squirrel-cage motor

Coupling

- Flexible coupling with or without spacer

Contact guard

- Coupling guard

Baseplate

- Baseplate (to ISO 3661), cast or welded, for pump and motor, in torsion-resistant design

Special accessories

- As required

4.11 Dimensions and weights

For dimensions and weights refer to the general arrangement drawing/outline drawing of the pump/pump set.

[^6]
5 Installation at Site

5．1 Safety regulations

	Excessive temperatures in the shaft seal area Explosion hazard！ Never operate a pump（set）with gland packing in potentially explosive atmospheres．

5．2 Checks to be carried out prior to installation

Place of installation

| Installation on a mounting surface which is unsecured and cannot support the load |
| :--- | :--- |
| Personal injury and damage to property！ |
| \triangleright Use a concrete of compressive strength class C12／15 which meets the |
| requirements of exposure class XS1 to EN 206． |
| \triangleright The mounting surface must be set，even，and level． |
| \triangleright Observe the weights indicated． |

1．Check the structural requirements．
All structural work required must have been prepared in accordance with the dimensions stated in the outline drawing／general arrangement drawing．

5．3 Installing the pump set

Always install the pump set in a horizontal position．

| Excessive temperatures due to improper installation |
| :--- | :--- |
| Explosion hazard！ |
| \triangleright Install the pump in a horizontal position to ensure self－venting of the pump． |

5.3.1 Installation on a foundation

Fig. 9: Fitting the shims

L	Bolt-to-bolt distance	1	Shim
2	Shim if L> 1000 mm	3	Foundation bolt

\checkmark The foundation has the required strength and characteristics.
\checkmark The foundation has been prepared in accordance with the dimensions given in the outline drawing / general arrangement drawing.
\checkmark The recommendations for preparing and processing concrete (\Rightarrow Section 9.2, Page 81) have been observed.
\checkmark On sizes 800-934, 800-935 and 800-939 the supportive structures (wood / 60 mm) have been removed from underneath the casing and the bearing bracket foot.

1. Position the pump set with the baseplate on the foundation and level it with the help of a precision spirit level placed on the shaft and discharge nozzle. Permissible deviation: $0.2 \mathrm{~mm} / \mathrm{m}$.
2. Use enough shims (1) to fully compensate any height difference. Always fit shims, if any, immediately to the left and right of the foundation bolts (3) between the baseplate/foundation frame and the foundation. For a bolt-to-bolt distance (L) > 1000 mm fit additional shims (2) halfway between the bolt holes.
All shims must lie perfectly flush.
3. Insert the foundation bolts (3) into the holes provided.
4. Use concrete to set the foundation bolts (3) into the foundation.

5. Wait until the concrete has set firmly, then level the baseplate.
6. Tighten the foundation bolts (3) evenly and firmly.
7. Check the alignment of pump, gear unit (if any) and motor. Re-align them, if necessary.
8. Grout the baseplate including the structure for the drive or drive/gear unit using low-shrinkage concrete with a standard particle size and a water/cement ratio ≤ 0.5. Avoid cavities.
Produce flowability with the help of a solvent.
Perform secondary treatment of the concrete to DIN 1045.

| NOTE |
| :--- | :--- |
| Expansion joints can be fitted between the pump and the suction line or discharge |
| line. |

5.4 Piping

5.4.1 Connecting the piping

	Impermissible loads acting on the pump nozzles Danger to life from leakage of hot, toxic, corrosive or flammable fluids! \triangleright \triangleright Do not use the pump as an anchorage point for the piping. Anchor the pipelines in close proximity to the pump and connect them properly without transmitting any stresses or strains.
\triangleright Observe the permissible forces and moments at the pump nozzles.	
\triangleright Take appropriate measures to compensate for thermal expansion of the piping.	

	CAUTION
Incorrect earthing during welding work at the piping Destruction of rolling element bearings (pitting effect)! \triangleright Never earth the electric welding equipment on the pump or baseplate. \triangleright Prevent current flowing through the rolling element bearings.	

NOTE
Installing check valves and shut-off valves in the system is recommended, depending on the type of plant. However, such elements must not obstruct proper drainage or hinder disassembly of the pump.

\checkmark Suction lift lines have been laid with a rising slope, suction head lines with a downward slope towards the pump.
\checkmark A flow stabilisation section having a length equivalent to at least twice the diameter of the suction flange has been provided upstream of the suction flange.
\checkmark The nominal diameters of the pipelines are equal to or greater than the nominal diameters of the pump nozzles.
\checkmark Adapters to larger nominal diameters are designed with a diffuser angle of approx. 8° to avoid excessive pressure losses.
\checkmark The pipelines have been anchored in close proximity to the pump and connected without transmitting any stresses or strains.

1. Thoroughly clean, flush and blow through all vessels, pipelines and connections (especially of new installations).
2. Before installing the pump in the piping, remove the flange covers on the suction and discharge nozzles of the pump.

	CAUTION
	Welding beads, scale and other impurities in the piping Damage to the pump! \triangleright Remove any impurities from the piping. \triangleright If necessary, install a filter. \triangleright Observe the information in (\Rightarrow Section 7.2.2.2, Page 50)

3. Check that the inside of the pump is free from any foreign objects. Remove any foreign objects.
4. If required, install a filter in the piping (see drawing: Filter in the piping).

Fig. 10: Filter in the piping

5.4.2 Permissible forces and moments at the pump nozzles

The permissible resultant forces have been determined according to:

$$
\begin{aligned}
& \mathrm{F}_{\text {res } \mathrm{D}} \leq \sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{z}}^{2}} \\
& \mathrm{~F}_{\mathrm{res} \mathrm{~S}} \leq \sqrt{\mathrm{F}_{\mathrm{y}}^{2}+\mathrm{F}_{\mathrm{z}}^{2}}
\end{aligned}
$$

Forces and moments at the pump nozzles
The data on forces and moments apply to static piping loads only. If the limits are exceeded, they must be checked and verified.
If a computerised strength analysis is required, values are available on request only. The values are only applicable if the pump is installed on a completely grouted baseplate and bolted to a rigid and level foundation.
Correction coefficients depending on material and temperature (see diagram below).
Material variants DDDD, DUUD, DKKM, DMKM: temperature-dependent correction coefficients
For material variants DDDD, DUUD, DKKM and DMKM and temperatures $>20^{\circ} \mathrm{C}$ reduce the values given in (\Rightarrow Section 5.4.2.1, Page 28) in accordance with the following diagram:

Fig. 11: Example of correction coefficients for material variant DDDD
Calculation of forces and moments for $\mathrm{T}>20^{\circ} \mathrm{C}$

Reduction formula:

Permissible force/moment $=\mathrm{k}(\mathrm{T}) \mathrm{x}$ force/moment from table
Example:

- Material = DDDD
- $\mathrm{T}=100^{\circ} \mathrm{C}$
- $k=0.98$

5.4.2.1 Material variants DDDD, DUUD, DMKM, DKKM (NORIDUR)

Table 11: Material variants DDDD, DUUD, DMKM, DKKM (NORIDUR): permissible forces and moments at the pump nozzles ${ }^{13)}$

Size	Forces									Moments					
	Suction nozzle				Discharge nozzl					Suction nozzle			Discharge nozzle		
	$\begin{gathered} F_{x} \\ {[N]} \end{gathered}$	$\begin{gathered} F_{y} \\ {[N]} \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{z}} \\ {[\mathrm{~N}]} \end{gathered}$	$\mathbf{F}_{\text {res }}$ [N]	$\begin{gathered} F_{x} \\ {[N]} \end{gathered}$	$F_{\text {yTenst }}$ [N]	$F_{\text {ycompr }}$ - [N]	$\begin{gathered} \mathrm{F}_{\mathrm{z}} \\ {[\mathrm{~N}]} \end{gathered}$	$F_{\text {res }}$ [N]	$\begin{gathered} \hline \mathrm{M}_{\mathrm{x}} \\ {[\mathrm{Nm}]} \end{gathered}$	$\begin{gathered} M_{y} \\ {[\mathrm{Nm}]} \end{gathered}$	$\begin{gathered} M_{z} \\ {[\mathrm{Nm}]} \end{gathered}$	M_{x} $[\mathrm{Nm}]$	$\begin{gathered} M_{y} \\ {[\mathrm{Nm}]} \end{gathered}$	$\begin{gathered} \mathbf{M}_{\mathbf{z}} \\ {[\mathrm{Nm}]} \end{gathered}$
500-400-710	25580	18635	21755	28645	20170	13300	24580	16750	26210	25050	19420	14285	20375	15540	10825
500-400-713	25580	18635	21755	28645	20170	13300	24580	16750	26210	25050	19420	14285	20375	15540	10825
500-500-633	25580	18635	21755	28645	21755	16600	25580	18635	28645	25050	19420	14285	25050	19420	14285
500-500-637	25580	18635	21755	28645	21755	16600	25580	18635	28645	25050	19420	14285	25050	19420	14285
600-600-824	26405	20170	23050	30625	23050	19900	26405	20170	30625	29340	23145	17995	29340	23145	17995
600-600-825	26405	20170	23050	30625	23050	19900	26405	20170	30625	29340	23145	17995	29340	23145	17995
600-600-829	26405	20170	23050	30625	23050	19900	26405	20170	30625	29340	23145	17995	29340	23145	17995
700-700-923	27100	21470	24145	32310	24145	23130	27100	21470	32310	33240	26725	21960	33240	26725	21960
800-700-953	27700	22595	25095	33765	24145	23130	27100	21470	32310	36700	30150	26200	33240	26725	21960
800-700-959	27700	22595	25095	33765	24145	23130	27100	21470	32310	36700	30150	26200	33240	26725	21960
800-900-883															
800-800-934	27700	22595	25095	33765	25095	26350	27700	22595	33765	36700	30150	26200	36700	30150	26200
800-800-935	27700	22595	25095	33765	25095	26350	27700	22595	33765	36700	30150	26200	36700	30150	26200
800-800-939	27700	22595	25095	33765	25095	26350	27700	22595	33765	36700	30150	26200	36700	30150	26200
900-900-1133	-	-	-		-	-	-	-	-	-	-	-		-	
900-900-1134	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

[^7]| Size | Forces | | | | | | | | | Moments | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Suction nozzle | | | | Discharge nozzle | | | | | Suction nozzle | | | Discharge nozzle | | |
| | F_{x}
 [N] | F_{y}
 [N] | F_{z}
 [N] | $F_{\text {res }}$
 [N] | F_{x}
 [N] | $\mathrm{F}_{\text {yTens }+}$
 [N] | $F_{\text {ycompr }}$.
 [N] | F_{z}
 [N] | $F_{\text {res }}$
 [N] | $M_{\text {x }}$
 [Nm] | $\begin{gathered} \mathbf{M}_{\mathrm{y}} \\ {[\mathrm{Nm}]} \end{gathered}$ | $\mathbf{M}_{\mathbf{z}}$
 [Nm] | $\begin{gathered} \mathbf{M}_{\mathrm{x}} \\ {[\mathrm{Nm}]} \end{gathered}$ | $\begin{gathered} \mathbf{M}_{\mathrm{y}} \\ {[\mathrm{Nm}]} \end{gathered}$ | M_{z}
 [Nm] |
| 900-900-1138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 900-900-1139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

5.4.2.2 Material variants GNNG, GHHH, GDNG, HHHH, KUKK, KKKK (grey cast iron, NORIHARD)

Table 12: Material variants GNNG, GHHH, GDNG, HHHH, KUKK, KKKK (grey cast iron, NORIHARD): permissible forces and moments at the pump nozzles ${ }^{14)}$

Size	Forces									Moments					
	Suction nozzle				Discharge nozzle					Suction nozzle			Discharge nozzle		
	F_{x} [N]	F_{y} [N]	F_{z} [N]	$F_{\text {res }}$ [N]	F_{x} [N]	$F_{y \text { Tens }+}$ [N]	$F_{y \text { compr }}$ [N]	F_{z} [N]	$F_{\text {res }}$ [N]	$\begin{gathered} M_{x} \\ {[\mathrm{Nm}]} \end{gathered}$	\mathbf{M}_{y} [Nm]	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ {[\mathrm{Nm}]} \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{x}} \\ {[\mathrm{Nm}]} \end{gathered}$	M_{y} [Nm]	M_{z} [Nm]
500-400-710	16600	13450	14950	21110	11950	6915	13900	10750	16070	14450	11800	10250	9700	7950	6900
500-400-713	16600	13450	14950	21110	11950	6915	13900	10750	16070	14450	11800	10250	9700	7950	6900
500-500-633	16600	13450	14950	21110	14950	8600	16600	13450	21110	14450	11800	10250	14450	11800	10250
500-500-637	16600	13450	14950	21110	14950	8600	16600	13450	21110	14450	11800	10250	14450	11800	10250
600-600-824	19900	16150	17950	24140	17950	10345	19900	16150	24140	20200	16600	14400	20200	16600	14400
600-600-825	19900	16150	17950	24140	17950	10345	19900	16150	24140	20200	16600	14400	20200	16600	14400
600-600-829	19900	16150	17950	24140	17950	10345	19900	16150	24140	20200	16600	14400	20200	16600	14400
700-700-923	23130	18820	20900	28120	20900	12025	23130	18820	28120	27030	22190	19280	27030	22190	19280
800-700-953	26350	21490	23870	32110	20900	12025	23130	18820	28120	34910	28680	24920	27030	22190	19280
800-700-959	26350	21490	23870	32110	20900	12025	23130	18820	28120	34910	28680	24920	27030	22190	19280
800-900-883	26350	21490	23870	32110	26830	15365	29550	24160	36100	34910	28680	24920	43840	36020	31310
800-800-934	26350	21490	23870	32110	23870	13700	26350	21490	32110	34910	28680	24920	34910	28680	24920
800-800-935	26350	21490	23870	32110	23870	13700	26350	21490	32110	34910	28680	24920	34910	28680	24920
800-800-939	26350	21490	23870	32110	23870	13700	26350	21490	32110	34910	28680	24920	34910	28680	24920
900-900-1133	29550	24160	26830	36100	26830	15365	29550	24160	36100	43840	36020	31310	43840	36020	31310
900-900-1134	29550	24160	26830	36100	26830	15365	29550	24160	36100	43840	36020	31310	43840	36020	31310
900-900-1137	29550	24160	26830	36100	26830	15365	29550	24160	36100	43840	36020	31310	43840	36020	31310
900-900-1138	29550	24160	26830	36100	26830	15365	29550	24160	36100	43840	36020	31310	43840	36020	31310
900-900-1139	29550	24160	26830	36100	26830	15365	29550	24160	36100	43840	36020	31310	43840	36020	31310

5.4.3 Auxiliary connections

Risk of potentially explosive atmosphere by incompatible fluids mixing in the
auxiliary piping
Risk of burns!
Explosion hazard!
\square Make sure that the barrier fluid or quench liquid are compatible with the fluid
handled.

[^8]	Failure to use or incorrect use of auxiliary connections (e.g. barrier fluid, flushing
liquid, etc.)	
Risk of injury from escaping fluid!	
Risk of burns!	
Malfunction of the pump!	
\triangleright Refer to the general arrangement drawing, the piping layout and pump	
markings (if any) for the quantity, dimensions and locations of auxiliary	
connections.	
\triangleright Use the auxiliary connections provided.	

5.5 Enclosure/insulation

| Risk of potentially explosive atmosphere due to insufficient venting |
| :--- | :--- |
| Explosion hazard!
 \square
 Make sure the space between the casing cover/discharge cover and the bearing
 cover is sufficiently vented.
 Never close or cover the perforation of the bearing bracket guards (e.g. by
 insulation). |

| Whe volute casing and casing/discharge cover take on the same temperature as the |
| :--- | :--- |
| fluid handled |
| Risk of burns! |
| \triangleright Insulate the volute casing. |
| \triangleright Fit protective equipment. |

	CAUTION
Heat build-up in the bearing bracket Damage to the bearing! ロ Never insulate the bearing bracket, bearing bracket lantern and casing cover.	

NOTE
Pump casings handling fluids at temperatures below freezing point may be insulated at the site, subject to the manufacturer's prior approval.

5.6 Checking the coupling alignment

DANGER

Inadmissible temperatures at the coupling or bearings due to misalignment of the coupling
Explosion hazard!
Risk of burns!
\triangleright Make sure that the coupling is correctly aligned at all times.

Fig. 12: Non-spacer-type coupling, checking the coupling alignment

1	Straight edge	2	Gauge

Fig. 13: Spacer-type coupling, checking the coupling alignment

1	Straight edge	2	Gauge

Fig．14：Double Cardan spacer－type coupling，checking the coupling alignment

1	Straight edge	2	Gauge

Table 13：Permissible alignment offset of coupling halves

Coupling type	Radial offset	Axial offset
	$[\mathrm{mm}]$	$\leq \mathrm{mm}]$
Non－spacer－type coupling（ \Rightarrow Fig．12）	$\leq 0,1$	$\leq 0,1$
Spacer－type coupling（ \Rightarrow Fig．13）	$\leq 0,1$	$\leq 0,1$
Double Cardan coupling（ \Rightarrow Fig．14）	$\leq 0,5$	$\leq 0,5$

\checkmark The coupling guard and its footboard，if any，have been removed．
1．Loosen the support foot and re－tighten it without transmitting any stresses and strains．
2．Place the straight edge axially on both coupling halves．
3．Leave the straight edge in this position and turn the coupling by hand． The coupling is aligned correctly if the distances A and B to the respective shafts are the same at all points around the circumference．
Observe the permissible radial offset in coupling half alignment（ \Rightarrow Table 13） both during standstill and at operating temperature as well as under inlet pressure．
4．Check the distance（dimension see general arrangement drawing）between the two coupling halves around the circumference．
The coupling is correctly aligned if the distance between the two coupling halves is the same at all points around the circumference．
Observe the permissible axial offset in coupling half alignment（ \Rightarrow Table 13） both during standstill and at operating temperature as well as under inlet pressure．
5．If alignment is correct，re－install the coupling guard and its footboard，if any．
Checking the coupling alignment with a laser tool
Coupling alignment may also be checked with a laser tool．Observe the documentation provided by the manufacturer of the measuring instrument．

5．7 Aligning the pump and motor

5．7．1 Motors with adjusting screw

Any differences in shaft centre height between the pump and motor are adjusted with adjusting screws．

Fig. 15: Motor with adjusting screw

1	Hexagon head bolt	2	Adjusting screw
3	Lock nut		

\checkmark The coupling is misaligned (\Rightarrow Section 5.6, Page 30).
\checkmark The coupling guard and footboard, if any, have been removed.

1. Unscrew the hexagon head bolts (1) at the motor and the locknuts (3) at the baseplate.
2. Turn the adjusting screws (2) by hand or by means of an open-end wrench until the coupling alignment is correct and all motor feet rest squarely on the baseplate.
3. Re-tighten the hexagon head bolts (1) at the motor and the locknuts (3) at the baseplate.
4. Check proper functioning of coupling/shaft.

Check that coupling/shaft can easily be rotated by hand.

| Unprotected rotating coupling |
| :--- | :--- |
| Risk of injury by rotating shafts! |
| Always operate the pump set with a coupling guard. |
| If the customer specifically requests not to include a coupling guard in KSB's |
| delivery, then the operator must supply one! |
| Observe all relevant regulations for selecting a coupling guard. |

	Risk of ignition by frictional sparks Explosion hazard!! \triangleright Choose a coupling guard material that is non-sparking in the event of mechanical contact.

5. Re-install the coupling guard and footboard, if any.
6. Check the distance between coupling and coupling guard.

The coupling guard must not touch the coupling.

5.7.2 Motors without adjusting screw

Any differences in shaft centre height between the pump and the motor are compensated by means of shims.

Fig. 16: Pump set with shim
1 Shim
\checkmark Misalignment of the coupling (\Rightarrow Section 5.6, Page 30).
\checkmark The coupling guard and footboard, if any, have been removed.

1. Unscrew the hexagon head bolts at the motor.
2. Insert shims (1) underneath the motor feet until the difference in shaft centre height has been compensated.
3. Re-tighten the hexagon head bolts.
4. Check that the coupling and shaft can easily be rotated by hand.

	Unprotected rotating coupling Risk of injury by rotating shafts! \triangleright Always operate the pump set with a coupling guard. If the customer specifically requests not to include a coupling guard in KSB's delivery, then the operator must supply one! \triangleright Observe all relevant regulations for selecting a coupling guard.

5. Reinstall the coupling guard and footboard, if any.
6. Check the distance between coupling and coupling guard. The coupling guard must not touch the coupling.

5.8 Electrical connection

	Electrical connection work by unqualified personnel Danger of death from electric shock! \triangleright \triangleright \triangleright Always have the electrical connections installed by a trained electrician.

| Observe the technical specifications of the local energy supply companies. |
| :--- | :--- |
| Damage to the power supply network, short circuit! |
| D Obsert connection to the mains |

1. Check the available mains voltage against the data on the motor name plate.
2. Select an appropriate starting method.

5.8.1 Setting the time relay

	CAUTION
	Switchover between star and delta on three-phase motors with star-delta starting takes too long. Damage to the pump (set)! \triangleright Keep switch-over intervals between star and delta as short as possible.

Table 14: Time relay settings for star-delta starting:

Motor rating	Y time to be set
$\leq 30 \mathrm{~kW}$	$<3 \mathrm{~s}$
$>30 \mathrm{~kW}$	$<5 \mathrm{~s}$
$>75 \mathrm{~kW}$	To be assessed at the site

5.8.2 Connecting the motor

NOTE
In compliance with IEC 60034-8, three-phase motors are always wired for clockwise rotation (looking at the motor shaft stub). The pump's direction of rotation is indicated by an arrow on the pump.

1. Match the motor's direction of rotation to that of the pump.
2. Observe the manufacturer's product literature supplied with the motor.

5.8.3 Earthing

4 DANGER

Electrostatic charging
Explosion hazard!
Damage to the pump set!

- Connect the PE conductor to the earthing terminal provided.
\triangleright Provide for potential equalisation between the pump set and the foundation.

5.9 Checking the direction of rotation

Temperature increase resulting from contact between rotating and stationary
components
Explosion hazard!
Damage to the pump set!
\triangleright Never check the direction of rotation by starting up the unfilled pump set.
\triangleright Separate the pump from the motor to check the direction of rotation.

| Hands inside the pump casing |
| :--- | :--- |
| Risk of injuries, damage to the pump! |
| Always disconnect the pump set from the power supply and secure it against |
| unintentional start-up before inserting your hands or other objects into the |
| pump. |

	CAUTIONIncorrect direction of rotation with non-reversible mechanical seal Damage to the mechanical seal and leakage! \triangleright Separate the pump from the motor to check the direction of rotation.

	CAUTION Drive and pump running in the wrong direction of rotation Damage to the pump! ロ Refer to the arrow indicating the direction of rotation on the pump. \triangleright Check the direction of rotation. If required, check the electrical connection and correct the direction of rotation.

The correct direction of rotation of the motor and pump is clockwise (seen from the drive end).

1. Start the motor and stop it again immediately to determine the motor's direction of rotation.
2. Check the direction of rotation.

The motor's direction of rotation must match the arrow indicating the direction of rotation on the pump.
3. If the motor is running in the wrong direction of rotation, check the electrical connection of the motor and switchgear, if any.

6 Commissioning/Start-up/Shutdown

6.1 Commissioning/Start-up

6.1.1 Prerequisites for commissioning/start-up

Before commissioning/starting up the pump set, make sure that the following conditions are met:

- The pump set has been mechanically connected as specified.
- The pump set has been properly connected to the power supply and is equipped with all protection devices. (\Rightarrow Section 5.8, Page 34)
- The pump has been primed with the fluid to be handled. The pump has been vented. (\Rightarrow Section 6.1.4, Page 39)
- The direction of rotation has been checked. (\Rightarrow Section 5.9, Page 36)
- All auxiliary connections required are connected and operational. (\Rightarrow Section 5.4.3, Page 29)
- The lubricants have been checked.
- After prolonged shutdown of the pump (set), the activities required for returning the equipment to service have been carried out. (\Rightarrow Section 6.4, Page 45)

6.1.2 Filling in the lubricant

Oil-lubricated bearings
Fill the bearing bracket with lubricating oil.

- Oil quality (\Rightarrow Section 7.2.3.1.2, Page 51)
- Oil quantity (\Rightarrow Section 7.2.3.1.3, Page 52)

Filling the constant level oiler with lubricating oil (oil-lubricated bearings only)
\checkmark The constant level oiler is screwed into the upper tapping hole of the bearing bracket.

	CAUTIONInsufficient quantity of lubricating oil in the reservoir of the constant level oiler Damage to the bearings! ロ Regularly check the oil level. a Always fill the oil reservoir completely.

Fig. 17: Bearing bracket with constant level oiler

1	Vent plug	2	Oil level in bearing bracket and connection elbow
3	Constant level oiler	4	Setting screw for adjusting the oil level

1. Adjust the oil level to 5.5 mm by means of the setting screw (4).
2. Pull out the vent plug (1).
3. Squeeze the clips at the constant level oiler (3) together. Pull the reservoir of the constant level oiler up and out of the connection elbow.
4. Fill in oil through the hole for the vent plug until the oil level reaches the connection elbow of the constant level oiler.

5. Fill the reservoir of the constant level oiler (3) to its maximum and insert it into the connection elbow.
6. Fit the vent plug (1).
7. After approximately 5 minutes, check the oil level in the glass reservoir of constant level oiler (3).
The oil reservoir must be properly filled at all times to provide a constant oil level. Repeat steps 1-6, if necessary.

| NOTE |
| :--- | :--- |
| An excessively high oil level can lead to a temperature rise and to leakage of the
 fluid handled or oil. |

6.1.3 Shaft seal

| CAUTION |
| :--- | :--- |
| Air in the mechanical seal area
 Insufficient lubrication!
 Mechanical seal failure!
 \triangleright Never start up the pump with the clearance between impeller and casing only
 partially filled. |

Shaft seals are fitted prior to delivery.
Observe the instructions on dismantling or assembly .

Quench reservoir If applicable, fill the quench reservoir in accordance with the general arrangement drawing.
 Double mechanical seal Prior to starting up the pump, apply barrier pressure as specified in the general

 arrangement drawing.External liquid feed Apply the quantities and pressures specified in the data sheet and the general arrangement drawing.
Prime the pump and the seal chamber with the fluid handled. The conical seal chamber is self-venting. The mechanical seal is operational.

- To ensure trouble-free continuous operation, the pressure at the seal must be at least 0.2 bar above the atmospheric pressure in normal operation.
- For temperatures exceeding $20^{\circ} \mathrm{C}$ a sufficient vapour pressure margin must be ensured.
- The seal must not be subjected to low pressure when the pump is running in reverse rotation.
- Avoid operation outside the specified pressure range as well as surge pressures from the piping system.
- The mechanical seal must be permanently surrounded by the fluid handled in order to build up a lubricating film in the sealing gap and to dissipate heat.
Supply line The operational reliability of the mechanical seal will be increased if any leakage of the fluid handled into the area between the shaft sleeve and the primary/mating ring is removed by periodic flushing. For this purpose, a periodic flushing facility can be permanently connected to a water tap by a 10 mm or 12 mm pipe.
6.1.4 Priming and venting the pump
Risk of potentially explosive atmosphere by incompatible fluids mixing in the
auxiliary piping
Risk of burns!
Explosion hazard!
Make sure that the barrier fluid or quench liquid are compatible with the fluid
handled.

	Risk of potentially explosive atmosphere inside the pump Explosion hazard! \triangleright The pump internals in contact with the fluid to be handled, including the seal chamber and auxiliary systems, must be filled with the fluid to be handled at all times. \triangleright Provide sufficient inlet pressure. \triangleright Provide an appropriate monitoring system.

| Shaft seal failure caused by insufficient lubrication |
| :--- | :--- |
| Hot or toxic fluid could escape! |
| Damage to the pump! |
| Before starting up the pump set, vent the pump and suction line and prime |
| both with the fluid to be handled. |

1. Vent the pump and suction line and prime both with the fluid to be handled.
2. Fully open the shut-off element in the suction line.
3. Fully open all auxiliary connections (barrier fluid, flushing liquid, etc).

6.1.5 Water cooling

$\begin{array}{cc} \text { an } \\ \text { ring } \\ \text { and } \\ \text { and } \end{array}$	CAUTION
	Deposit-forming, aggressive cooling water Damage to the pump! \triangleright Observe the cooling water quality.

Observe the following quality data of the cooling water:

- Not deposit-forming
- Not aggressive
- Free from suspended solids
- Hardness on average $5^{\circ} \mathrm{dH}$ (~1 mmol/l)
- $\mathrm{pH}>8$
- Conditioned and neutral with regard to mechanical corrosion
- Inlet temperature $\mathrm{t}_{\text {in }}=10$ to $30^{\circ} \mathrm{C}$

Outlet temperature $\mathrm{t}_{\text {out }}=45^{\circ} \mathrm{C}$ max.

6.1.6 Final check

1. Remove the coupling guard and its footboard, if any.
2. Check the coupling alignment; re-align the coupling, if required.
(\Rightarrow Section 5.6, Page 30)
3. Check proper functioning of coupling/shaft. Check that coupling/shaft can be easily rotated by hand.
4. Fit the coupling guard and its footboard, if any.
5. Check the distance between coupling and coupling guard. The coupling guard must not touch the coupling.

6.1.7 Start-up

Non-compliance with the permissible pressure and temperature limits if the pump
is operated with the suction and/or discharge line closed.
Explosion hazard!
Hot or toxic fluids escaping!
Never operate the pump with the shut-off elements in the suction line and/or
discharge line closed.
Only start up the pump set with the discharge-side shut-off element slightly or
Excessive temperatures due to dry running or excessive gas content in the fluid
handled
Explosion hazard!
Damage to the pump set!
\triangleright Never operate the pump set without liquid fill.
\triangleright Prime the pump as per operating instructions. (\Rightarrow Section 6.1.4, Page 39)
\triangleright Always operate the pump within the permissible operating range.

	CAUTION
ar	Abnormal noises, vibrations, temperatures or leakage Damage to the pump! - Switch off the pump (set) immediately. \triangleright Eliminate the causes before returning the pump set to service.

\checkmark The system piping has been cleaned.
\checkmark Pump, suction line and inlet tank, if any, have been vented and primed with the fluid to be pumped
\checkmark The lines for priming and venting have been closed.

1. Fully open the shut-off element in the suction head/suction lift line.
2. Single-pump operation: Slightly open the shut-off element in the discharge line (start-up also possible against open discharge line).
Pumps operating in parallel: Close the shut-off element in the discharge line.

3. Start up the motor.
4. Immediately after the pump has reached full rotational speed, slowly open the shut-off element in the discharge line and adjust it to comply with the duty point (operation against closed shut-off element: 60 seconds maximum).

5. Check the coupling alignment and re-align the coupling, if required.

6.1.8 Checking the shaft seal

Mechanical seal The mechanical seal only leaks slightly or invisibly (as vapour) during operation.
Residues will collect in the atmosphere-side seal area, depending on the contents of fluid to be sealed off. They must be removed by regular flushing with clean water. The free movement of the primary ring must not be impaired by solid deposits.
Double mechanical seal

DANGER

Excessive temperature of barrier fluid (pumps with double mechanical seal)
Explosion hazard!
Excessive surface temperature
\triangleright For pumps with double mechanical seal, make sure that the barrier fluid's temperature does not exceed $60^{\circ} \mathrm{C}$.

6.1.9 Shutdown

\checkmark The shut-off element in the suction line is and remains open.
\checkmark On pump sets with double mechanical seal, apply the required pressure specified in the general arrangement drawing to the mechanical seal chamber also during standstill.
\checkmark Quench liquid supply must also be ensured during pump standstill.

1. Single-pump operation: Close the shut-off element (if any) in the discharge line (shutdown also possible with open discharge line.)(Operation against closed shut-off element: 60 seconds maximum)
Pumps operating in parallel: Close the shut-off element in the discharge line. (Operation against closed shut-off element: 60 seconds maximum)
2. Switch off the motor and make sure the pump set runs down smoothly to a standstill.
If the discharge line is equipped with a non-return or check valve, the shut-off
element may remain open provided that the system conditions and system
regulations are considered and observed.

	CAUTION Risk of freezing during pump shutdown Damage to the pump! D Drain the pump and cooling/heating chambers (if any) or protect them against freezing.

For prolonged shutdown periods / shutdown > 24 hours for absorber recirculation pumps:

1. Close the shut-off element in the suction line.
2. Close any auxiliary lines.

If the fluid to be handled is fed in under vacuum, also supply the shaft seal with barrier fluid during standstill.
Only turn off the cooling liquid supply after the pump has cooled down.
3. Drain the pump. (\Rightarrow Section 7.3, Page 52)
4. For absorber recirculation pumps only:

Fill pumps with water up to 500 mm above the discharge nozzle flange.

Absorber recirculation pumps

If all of the following prerequisites are met, absorber recirculation pumps do not necessarily need to be filled with water:

- Discharge-side shut-off elements are provided at the site, which definitely prevent flue gas from entering the pumps during standstill.
- The fluid handled complies with the specified composition.
- The fluid handled must not contain ferritic particles (e.g. particles abraded from the balls of ball mills, or other rust particles) as this could cause corrosion.
- The actual maximum particle size must match the data in the data sheet. Impermissibly large particles will form deposits on the suction-side sealing clearance and lead to damage during start-up.
- The sediment is resuspendable and must not fill the pump any further than the lower edge of the suction nozzle to protect the mechanical seal.

6.2 Operating limits

Non-compliance with operating limits for pressure, temperature, fluid handled and
speed
Explosion hazard!
Hot or toxic fluid could escape!
\triangleright Comply with the operating data specified in the data sheet.
\triangleright Never use the pump for handling fluids it is not designed for.
\triangleright Avoid prolonged operation against a closed shut-off element.
\triangleright Never operate the pump at temperatures, pressures or rotational speeds
exceeding those specified in the data sheet or on the name plate unless the
written consent of the manufacturer has been obtained.

| A. DANGER |
| :--- | :--- |
| Formation of a potentially explosive atmosphere inside the pump
 Explosion hazard!
 \triangleright When draining tanks take suitable measures to prevent dry running of the
 pump (e.g. fill level monitoring). |

6.2.1 Ambient temperature

$|$| CAUTION |
| :--- |
| |
| Operation outside the permissible ambient temperature |
| Damage to the pump (set)! |
| \triangleright Observe the specified limits for permissible ambient temperatures. |

Observe the following parameters and values during operation:
Table 15: Permissible ambient temperatures

Permissible ambient temperature	Value
Maximum	$50^{\circ} \mathrm{C}$
	$40^{\circ} \mathrm{C}^{(5)}$
Minimum	See data sheet.

6.2.2 Frequency of starts

[^9]starting，moments of inertia，etc）．If the start－ups are evenly spaced over the period indicated，the following limits serve as orientation for start－up with the discharge－ side shut－off valve slightly open：

Table 16：Frequency of starts

Motor rating	Maximum frequency of starts
［kW］	［Starts／hour］
≤ 12	15
≤ 100	10
>100	5

	CAUTION
	Re－starting while motor is still running down Damage to the pump（set）！ D Do not re－start the pump set before the pump rotor has come to a standstill．

6．2．3 Fluid handled

6．2．3．1 Flow rate

Unless specified otherwise in the characteristic curves or in the data sheets，the following applies：
－Short－time operation：$Q_{\min }{ }^{16)}=0.4 \times Q_{\text {BEP }}{ }^{17)}$
－Continuous operation： $\mathrm{Q}_{\text {min }}{ }^{16)}=0.5 \times \mathrm{Q}_{\mathrm{BEP}}{ }^{17)}$
－6－pole operation：$Q_{\max }{ }^{18)}=1.1 \times Q_{B E P}{ }^{17)}$
－8－pole operation： $\mathrm{Q}_{\max }{ }^{18)}=1.25 \times \mathrm{Q}_{\text {BEP }}{ }^{17)}$
The data refer to water and water－like fluids．Longer operating periods with these fluids and at the flow rates indicated will not cause an additional increase in the temperatures on the pump surface．However，if the physical properties of the fluids handled differ from those of water，the calculation formula below must be used to check if an additional heat build－up may lead to a dangerous temperature increase at the pump surface．If necessary，the minimum flow must be increased．
$\mathrm{T}_{\mathrm{O}}=\mathrm{T}_{\mathrm{f}}+\Delta \vartheta$
$\Delta \vartheta=\frac{g^{\times} H}{c^{\times} \eta} \times(1-\eta)$
Table 17：Key

Symbol	Description	Unit
C	Specific heat capacity	$\mathrm{J} / \mathrm{kg} \mathrm{K}$
g	Acceleration due to gravity	$\mathrm{m} / \mathrm{s}^{2}$
H	Pump discharge head	m
T_{f}	Fluid temperature	${ }^{\circ} \mathrm{C}$
T_{o}	Temperature at the casing surface	${ }^{\circ} \mathrm{C}$
$\boldsymbol{\eta}$	Pump efficiency at duty point	-
$\Delta \vartheta$	Temperature difference	K

[^10]
6.2.3.2 Density of the fluid handled

The power input of the pump set will change in proportion to the density of the fluid handled.

	CAUTION
	Impermissibly high density of the fluid handled Motor overload! \triangleright \triangleright Observe the information about fluid density in the data sheet. \triangleright Make sure the motor has sufficient power reserves.

6.2.3.3 Abrasive fluids

Do not exceed the maximum permissible solids content specified in the data sheet. When the pump handles fluids containing abrasive substances, increased wear of the hydraulic system and shaft seal are to be expected. In this case, reduce the commonly recommended inspection intervals.
Permissible operating range for highly abrasive fluids: $\mathrm{Q}=0.8 \ldots 1.1 \times \mathrm{Q}_{\text {BEP }}$

6.2.3.4 Oxidation air in the fluid handled

The pump can handle an air content of 5% in the limestone suspension without any negative impacts on the shaft seal and the pump operation.

6.3 Shutdown/storage/preservation

6.3.1 Measures to be taken for shutdown

The pump (set) remains installed

\checkmark Sufficient fluid is supplied for the functional check run of the pump.

1. For prolonged shutdown periods, start up the pump (set) regularly between once a month and once every three months for approximately five minutes.
\Rightarrow This will prevent the formation of deposits within the pump and the pump intake area.

The pump (set) is removed from the pipe and stored

\checkmark The pump has been properly drained. (\Rightarrow Section 7.3, Page 52)
\checkmark The safety instructions for dismantling the pump have been observed. (\Rightarrow Section 7.4.1, Page 53)
\checkmark The permissible ambient temperature for storing the pump is observed.

1. Spray-coat the inside wall of the pump casing and, in particular, the impeller clearance areas with a preservative.
2. Spray the preservative through the suction nozzle and discharge nozzle. It is advisable to then close the pump nozzles (e.g. with plastic caps)
3. Oil or grease all exposed machined parts and surfaces of the pump (with silicone-free oil or grease, food-approved, if required) to protect them against corrosion.
Observe the additional instructions on preservation. (\Rightarrow Section 3.3, Page 15)
If the pump set is to be stored temporarily, only preserve the wetted components made of low-alloy materials. Commercially available preservatives can be used for this purpose. Observe the manufacturer's instructions for application/removal.

6.4 Returning to service

For returning the equipment to service observe the sections on commissioning/startup and the operating limits. (\Rightarrow Section 6.1, Page 37) (\Rightarrow Section 6.2, Page 43)

In addition, carry out all servicing/maintenance operations before returning the pump (set) to service. (\Rightarrow Section 7, Page 47)
Failure to re-install or re-activate protective devices
Risk of injury from moving parts or escaping fluid!
\square As soon as the work is completed, properly re-install and re-activate any safety-
relevant devices and protective devices.

| If the equipment has been out of service for more than one year, replace all |
| :--- | :--- |
| elastomer seals. |

7 Servicing/Maintenance

7.1 Safety regulations

| A. DANGER |
| :--- | :--- |
| Improper cleaning of coated pump surfaces
 Explosion hazard by electrostatic discharge!
 - When cleaning coated pump surfaces in atmospheres of Explosion group IIC,
 use suitable anti-static equipment. |

| Sparks produced during servicing work |
| :--- | :--- |
| Explosion hazard! |
| \triangleright Observe the safety regulations in force at the place of installation! |
| \triangleright Always perform maintenance work at an explosion-proof pump (set) outside of |
| potentially explosive atmospheres. |

Improperly serviced pump set

Explosion hazard!
Damage to the pump set!
- Service the pump set regularly.
Prepare a maintenance schedule with special emphasis on lubricants, shaft seal
and coupling.

The operator ensures that maintenance, inspection and installation are performed by authorised, qualified specialist personnel who are thoroughly familiar with the manual.

| Unintentional starting of the pump set |
| :--- | :--- |
| Risk of injury by moving components and shock currents! |
| Ensure that the pump set cannot be started unintentionally. |
| Always make sure the electrical connections are disconnected before carrying |
| out work on the pump set. |

| luids handled, consumables and supplies which are hot and/or pose a health
 hazard
 Risk of injury!
 \triangleright Observe all relevant laws.
 \triangleright When draining the fluid take appropriate measures to protect persons and the
 environment.
 \triangleright Decontaminate pumps which handle fluids posing a health hazard. |
| :--- | :--- |

| Insufficient stability |
| :--- | :--- |
| Risk of crushing hands and feet! |
| D During assembly/dismantling, secure the pump (set)/pump parts to prevent |
| tilting or tipping over. |

A regular maintenance schedule will help avoid expensive repairs and contribute to trouble-free, reliable operation of the pump, pump set and pump parts with a minimum of servicing/maintenance expenditure and work.

| NOTE |
| :--- | :--- |
| All maintenance work, service work and installation work can be carried out by KSB
 Service or authorised workshops. For contact details refer to the enclosed
 "Addresses" booklet or visit "www.ksb.com/contact" on the Internet. |

Never use force when dismantling and reassembling the pump set.

7.2 Servicing/Inspection

7.2.1 Supervision of operation

	Risk of potentially explosive atmosphere inside the pump Explosion hazard! \triangleright The pump internals in contact with the fluid to be handled, including the seal chamber and auxiliary systems, must be filled with the fluid to be handled at all times. \triangleright Provide sufficient inlet pressure. \triangleright Provide an appropriate monitoring system.

Incorrectly serviced shaft seal
Explosion hazard!
Hot, toxic fluid escaping!
Damage to the pump set!
Risk of burns!
Fire hazard!
\triangleright Regularly service the shaft seal.
Excessive temperatures as a result of bearings running hot or defective bearing
seals
Explosion hazard!
Fire hazard!
Damage to the pump set!
Risk of burns!
\triangleright Regularly check the lubricant level.
\triangleright Regularly check the rolling element bearings for running noises.
Incorrectly serviced barrier fluid system
Explosion hazard!
Fire hazard!
Damage to the pump set!
Hot and/or toxic fluids escaping!
\triangleright Regularly service the barrier fluid system.
\triangleright Monitor the barrier fluid pressure.

	CAUTION
	Increased wear due to dry running Damage to the pump set! \square
Never operate the pump set without liquid fill. Never close the shut-off element in the suction line and/or supply line during pump operation.	

	CAUTION Impermissibly high temperature of fluid handled Damage to the pump! \triangleright
Prolonged operation against a closed shut-off element is not permitted	
(heating up of the fluid).	
Observe the temperature limits in the data sheet and in the section on	
operating limits. (\Rightarrow Section 6.2, Page 43)	

While the pump is in operation, observe and check the following:

- The pump must run quietly and free from vibrations at all times.
- In case of oil lubrication, ensure the oil level is correct.
- Check the shaft seal.
- Check the static sealing elements for leakage.
- Check the rolling element bearings for running noises. Vibrations, noise and an increase in current input occurring during unchanged operating conditions indicate wear.
- Monitor the correct functioning of any auxiliary connections.
- Cooling system

Take the pump out of service at least once a year to thoroughly clean the cooling system.

- Monitor the stand-by pump.

To make sure that the stand-by pumps are ready for operation, start them up once a week.

- Monitor the bearing temperature.

The bearing temperature must not exceed $90^{\circ} \mathrm{C}$ (measured on the outside of the bearing bracket).

	CAUTION Operation outside the permissible bearing temperature Damage to the pump! \triangleright The bearing temperature of the pump (set) must never exceed $90^{\circ} \mathrm{C}$ (measured on the outside of the bearing bracket).

7.2.2 Inspection work

Excessive temperatures caused by friction, impact or frictional sparks
Explosion hazard!
Fire hazard! Damage to the pump set! Regularly check the coupling guard, plastic components and other guards of rotating parts for deformation and sufficient distance from rotating parts.

| AT DANGER |
| :--- | :--- |
| Electrostatic charging due to insufficient potential equalisation
 Explosion hazard!
 \triangleright Make sure that the connection between pump and baseplate is electrically
 conductive. |

7.2.2.1 Checking the coupling

Check the flexible elements of the coupling. Replace the relevant parts in due time if there is any sign of wear and check the alignment.

7.2.2.2 Cleaning filters

	CAUTION
	Insufficient inlet pressure due to clogged filter in the suction line Damage to the pump! \triangleright Monitor contamination of filter with suitable means (e.g. differential pressure gauge). \triangleright Clean filter at appropriate intervals.

7.2.2.3 Checking the bearing seals

DANGER

Excessive temperatures caused by mechanical contact
Risk of explosion!
Damage to the pump set!
\triangleright Check correct seating of axial seal rings mounted on the shaft. Only gentle contact of the sealing lip shall be established.

7.2.2.4 Periodic flushing of the mechanical seal (recommended)

Residues will collect in the atmosphere-side seal area, depending on the contents of fluid to be sealed off. These residues must be removed by regular flushing with clean water. This will prevent the free movement of the primary ring from being impaired by solid deposits.

Prior to every flushing procedure, the gap between the rotating shaft sleeve and the thrust ring must be visually inspected. Any leakage or leakage residues / crystals must be reported to the responsible KSB service centre immediately.

- Recommended interval during continuous operation: every 2 weeks, 10 minutes at $10 \mathrm{l} /$ minute
- Flushing liquid: clean process water, maximal contamination of $50 \mu \mathrm{~m}$
- Flushing pressure 2-4 bar

Flushing shall be performed before and after any pump shutdown of more than 2 days.

7.2.2.5 Checking the diagonal clearance

	CAUTION
	Non-compliance with the clearances between impeller and suction liner/plate Damage to components/linings! \triangleright Check diagonal clearance once every 6 months of operation. \triangleright Observe the specified clearances. (\Rightarrow Table 22) .

7.2.3 Lubrication and lubricant change of rolling element bearings
Excessive temperatures as a result of bearings running hot or defective bearing
seals
Explosion hazard!
Fire hazard!
Damage to the pump set!
\square Regularly check the condition of the lubricant.

7.2.3.1 Oil lubrication

The rolling element bearings are lubricated with mineral oil.

7.2.3.1.1 Intervals

Table 18: Oil change intervals

Oil change	Interval ${ }^{(9)}$
Change of initial oil fill	Every 8000 operating hours ${ }^{20)}$
Further oil changes	Every 8000 operating hours ${ }^{20}$

If the oil is contaminated, change the oil more frequently, as required.
7.2.3.1.2 Oil quality

Table 19: Lubricant characteristics

Description	Properties	
Lubricating oil CL68 or CLP68 to	Kinematic viscosity at $40^{\circ} \mathrm{C}$	$68 \pm 6 \mathrm{~mm}^{2} / \mathrm{s}$
DIN 51517	Flash point (to Cleveland)	$+175^{\circ} \mathrm{C}$
	Solidification point (pour point)	$-9^{\circ} \mathrm{C}$
	Application temperature ${ }^{21)}$	$0-175^{\circ} \mathrm{C}$

[^11]
7．2．3．1．3 Oil quantity

Table 20：Oil quantity

Bearing bracket	Oil quantity $[I]$
P16ax	14
P20sx	24

7．2．3．1．4 Changing the oil

	Lubricants posing a health hazard and／or hot lubricants Hazard to persons and the environment！ \triangleright When draining the lubricant take appropriate measures to protect persons and the environment． \triangleright Wear safety clothing and a protective mask if required． \triangleright Collect and dispose of any lubricants． \triangleright Observe all legal regulations on the disposal of fluids posing a health hazard．

Fig．18：Bearing bracket with constant level oiler

1	Constant level oiler	2	Bearing bracket
3	Screw plug		

\checkmark A suitable container for the used oil is on hand．
1．Place the container underneath the screw plug（3）．
2．Undo the screw plug（3）at the bearing bracket and drain the oil．
3．Once the bearing bracket（2）has been drained，re－insert and re－tighten the screw plug（3）．
4．Re－fill with oil．（ \Rightarrow Section 6．1．2，Page 37）

7．3 Drainage／cleaning

	Fluids handled，consumables and supplies which are hot and／or pose a health hazard Hazard to persons and the environment！ \triangleright Collect and properly dispose of flushing fluid and any fluid residues． \triangleright Wear safety clothing and a protective mask if required． \triangleright Observe all legal regulations on the disposal of fluids posing a health hazard．

If the pump set has handled fluids whose residues could lead to corrosion damage in the presence of atmospheric humidity or could ignite upon contact with oxygen, the pump set must be neutralised, and anhydrous inert gas must be blown through the pump to ensure drying.

Use connection 6B to drain the fluid handled (see drawing of auxiliary connections).
For wear reasons, pump casings made of abrasion-resistant materials cannot be provided with a drain hole.

7.4 Dismantling the pump set

7.4.1 General information/Safety regulations

| Unqualified personnel performing work on the pump (set) |
| :--- | :--- |
| Risk of injury! |
| \triangleright Always have repair work and maintenance work performed by specially trained, |
| qualified personnel. |

| Hot surface |
| :--- | :--- |
| Risk of injury! |
| \triangleright Allow the pump set to cool down to ambient temperature. |

Observe the general safety instructions and information. (\leftrightharpoons Section 7.1, Page 47)
For any work on the motor, observe the instructions of the relevant motor manufacturer.

For dismantling and reassembly observe the exploded views and the general assembly drawing. (\Rightarrow Section 9.1, Page 71)

$\begin{aligned} & \underset{u}{z} \\ & \stackrel{1}{N} \\ & \underset{N}{\infty} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \underset{N}{2} \end{aligned}$		4 DANGER
		Insufficient preparation of work on the pump (set) Risk of injury! - Properly shut down the pump set. \triangleright Close the shut-off elements in the suction line and discharge line. \triangleright Drain the pump and release the pump pressure. (\Rightarrow Section 7.3, Page 52) \triangleright Shut off any auxiliary feed lines. \triangleright Allow the pump set to cool down to ambient temperature.

	CAUTION\quadImproper removal/fitting of fragile, shock-sensitive CeramikPolySiC® components or linings Damage to the components/linings! \triangleright Never use a hammer on components made of CeramikPolySiC®, apply blows or press them down with force. \triangleright Always use suitable lifting tackle (e.g. straps, loops) for transporting components made of CeramikPolySiC®. \triangleright Never use chains to transport components made of CeramikPolySiC®.

| NOTE |
| :--- | :--- |
| After a prolonged period of operation the individual components may be hard to
 pull off the shaft. If this is the case, use a brand name penetrating agent and/or - if
 possible - an appropriate puller. |

7.4.2 Preparing the pump set

1. De-energise the pump set and secure it against unintentional start-up.
2. Disconnect and remove all auxiliary pipework.
3. Remove the pump-end coupling guard.
4. Remove the coupling spacer, if any.
5. Drain the oil fill of oil-lubricated bearings. (\Rightarrow Section 7.2.3.1.4, Page 52)
6. Remove guard 680.11 at the lantern.
7. Axially fasten the mechanical seal with locking device 96-3.
8. Undo clamping ring 515.
9. Remove the constant level oiler including the piping.

7.4.3 Removing the motor

1. Disconnect the motor from the power supply.
2. Unbolt the motor from the baseplate.
3. Shift the motor to separate it from the pump.

7.4.4 Removing the back pull-out unit

\checkmark The notes and steps stated in (\Rightarrow Section 7.4.1, Page 53) to (\Rightarrow Section 7.4.3, Page 54) have been observed/carried out.
\checkmark On pump sets with a non-spacer-type coupling, the motor has been removed.

| Back pull-out unit tilting |
| :--- | :--- |
| Risk of squashing hands and feet! |
| \triangleright Suspend or support the back pull-out unit at the pump end. |

1. Fasten the lifting tackle to eyebolts 900.41 or 59-47.41 (on sizes 800-900-883, 900-900-1133, 900-900-1134, 900-900-1138, 900-900-1139) of the back pull-out unit.
2. Undo bolted connection 901.64/920.64 at support foot 183 . Support foot 183 remains bolted to the baseplate.
3. Undo by approximately 10 mm screws $901.36 / 901.37$ fastening the bearing carrier.
4. Undo hexagon nuts 920.01 at the volute casing.

NOTE
Use forcing screws 901.31 to facilitate disassembly. Clean the threads of the forcing screws before using them.

5. Use forcing screws 901.31 to press the back pull-out unit out of volute casing 101.

	CAUTIONIncorrect dismantling Damage to the CeramikPolySiC® lining! - Prevent the discharge cover from jamming when pulling the pump rotor out of the casing.

6. Place the back pull-out unit on a clean and level surface. The bearing bracket flange and the integrally cast support foot are of the same constructional height.
7. Remove and dispose of joint ring 411.10, if any

7.4.5 Removing the impeller

\checkmark The notes and steps stated in (\Rightarrow Section 7.4.1, Page 53) to
(\Rightarrow Section 7.4.4, Page 54) have been observed/carried out.
\checkmark The back pull-out unit has been placed in a clean and level assembly area.

1. Loosen hexagon head bolt 901.87 and remove sealing elements 400.65 .
2. Remove impeller hub cap 260.01 with the corresponding tool ${ }^{22)}$ (see supplementary operating instructions).
3. Remove and dispose of O-ring 412.03.
4. Undo hexagon socket head cap screws 914.12.
5. Remove disc 550.87 .
6. Remove impeller 230 with the impeller fitting and removal tool ${ }^{22)}$ (see supplementary operating instructions).
7. Place impeller 230 on a clean and level surface.

[^12]8. Remove keys 940.1 from shaft 210.
9. Remove shaft protecting sleeve 524.01 (if any) from the shaft.

7.4.6 Removing the mechanical seal

NOTE

Prior to dismantling discharge cover 163, the mechanical seal is removed towards the impeller end. The back pull-out unit may remain installed.
\checkmark The notes and steps stated in (\Rightarrow Section 7.4.1, Page 53) to (\Rightarrow Section 7.4.5, Page 55) have been observed/carried out.

1. Rotate locking device $96-3$ to insert it into the shaft groove.
2. Undo screwed connection 914.53 to undo clamping ring 515.
3. Undo hexagon socket head cap screw 914.03.
4. Use forcing screws 901.21 (not available for V11) to remove the cartridge seal from the discharge cover.

7.4.7 Removing the discharge cover

\checkmark The notes and steps stated in (\Rightarrow Section 7.4.1, Page 53) to (\Rightarrow Section 7.4.6, Page 56) have been observed/carried out.
\checkmark The back pull-out unit has been placed in a clean and level assembly area.

1. Screw eyebolts into the drilled M16 holes on the outside diameter of the discharge cover. Use the eyebolts to attach the discharge cover to the lifting equipment.
2. Remove hexagon nut 920.15 and hexagon head bolt 901.22.
3. Use forcing screws 901.30 to remove discharge cover 163.
4. Set the discharge cover down on a clean and level assembly surface.

7.4.8 Dismantling the bearings

\checkmark The notes and steps stated in (\Rightarrow Section 7.4.1, Page 53) to (\Rightarrow Section 7.4.7, Page 56) have been observed/carried out.
\checkmark The back pull-out unit has been placed in a clean and level assembly area.

1. Pull the pump-end coupling half off with a puller.
2. Remove key 940.02 .
3. Remove throwers 507.01 and 507.02.
4. Move complete bearing carrier 382 in bearing bracket 330 axially towards the pump end until hexagon nut 920.23 (on the outside) is aligned with bolt 563.23.
5. Fasten the bearing carrier with nut 920.23 (on the inside).
6. Screw the M24 eyebolt into the pump-side shaft end.
7. Slightly lift the back pull-out unit with the drive-side shaft end pointing downwards.
8. Set the bearing down in a vertical position with the drive-side shaft end down. Suitably secure the bearing bracket against tilting and slipping.
9. Remove hexagon nut 920.23 (on the outside).
10. Undo bolts 901.94.
11. Remove bearing cover 360.01 with forcing screws 901.89. (Use the 2 M 16 eyebolts for attaching lifting tackle)
12. Pull complete bearing carrier 382 vertically upwards and out of bearing bracket 330.
13. Set bearing carrier 382 down in a horizontal position.
14. Undo hexagon socket head cap screw 914.36/.37 (fastening the bearing carrier). Remove discs 550.36/37.
15. Set bearing bracket 330 down in a horizontal position.
16. Screw the M24 eyebolt into the drive-side shaft end. Secure bearing carrier 382 in a vertical position on a workbench or similar.
17. Undo bolts 901.95.
18. Remove bearing cover 360.02 with forcing screws 901.91.
19. Pull out shaft 210 with the rolling element bearing. Place it on a clean and level assembly surface.
20. For bearing bracket P16ax: Remove the outer rings of cylindrical roller bearings 322.01 and 322.02.

For bearing bracket P20sx: Remove the outer rings of cylindrical roller bearing 322.01 and spherical thrust roller bearing 324.03. Remove springs 950.01.
21. Remove circlip 932.01 .
22. Remove bushes 540.22/23.
23. Remove hexagon nuts 920.21 and lock washer 931.01 .
24. For bearing bracket P16ax: Remove rolling element bearing 320.03 and the inner ring of cylindrical roller bearing 322.02 with a puller.
For bearing bracket P20sx: Remove rolling element bearing 322.02 and spherical thrust roller bearing 324.03 with disc 550.26 .
25. Pull the inner ring of cylindrical roller bearing 322.01 off the shaft with a puller.

7.4.9 Removing the suction cover

\checkmark The notes and steps stated in (\Rightarrow Section 7.4.1, Page 53) to (\Rightarrow Section 7.4.8, Page 56) have been observed/carried out.
\checkmark The back pull-out unit has been placed in a clean and level assembly area.

1. Attach lifting tackle to eyebolt 900.06 of complete suction cover 162.
2. Undo hexagon nuts 920.27.
3. Use forcing screws 901.44 to remove complete suction cover 162 (on individual pump sizes suction cover 162 with wear plate 135.01).
4. Only for sizes with wear plate $\mathbf{1 3 5 . 0 1}$ made of CeramicPolySiC ${ }^{\circledR}$: Prior to removing the suction cover / wear plate assembly completely from pump casing 101, evenly tighten grub screws 904.97 (6x).
5. For metal wear plate 135.01: Undo hexagon head bolts 901.03/411.13. and remove the wear plate.
6. Place the suction cover with the suction flange down on a clean and level assembly surface.

7.5 Reassembling the pump set

7.5.1 General information/Safety regulations

```
WARNING
Improper lifting/moving of heavy assemblies or components
Personal injury and damage to property!
\(\triangleright\) Use suitable transport devices, lifting equipment and lifting tackle to move heavy assemblies or components.
```

	CAUTION
	Improper reassembly Damage to the pump！ \triangleright Reassemble the pump（set）in accordance with the general rules of sound engineering practice． \triangleright Use original spare parts only．

	CAUTION
	Improper removal／fitting of fragile，shock－sensitive CeramikPolySiC® components or linings Damage to the components／linings！ \triangleright Never use a hammer on components made of CeramikPolySiC®，apply blows or press them down with force． \triangleright Always use suitable lifting tackle（e．g．straps，loops）for transporting components made of CeramikPolySiC®． \triangleright Never use chains to transport components made of CeramikPolySiC®．

Sequence Always reassemble the pump in accordance with the corresponding general assembly drawing．

Sealing elements • Gaskets

－Always use new gaskets，making sure that they have the same thickness as the old ones．
－Always fit gaskets of asbestos－free materials or graphite without using lubricants（e．g．copper grease，graphite paste）．

－O－rings

－Never use O－rings that have been made by cutting an O－ring cord to size and gluing the ends together

	CAUTION
	Contact of O－ring with graphite or similar material
	Fluid could escape！
	\triangleright Do not coat O－ring with graphite or similar material．
	－Use animal fats or lubricants based on silicone or PTFE．

－Assembly aids

－For gaskets，avoid the use of assembly adhesives if possible．
－If assembly adhesives are required，use a commercially available contact adhesive（e．g．Pattex）．
－Only apply adhesives at selected points and in thin layers．
－Never use quick－setting adhesives（cyanoacrylate adhesives）．
－Coat the locating surfaces of the individual components and screwed connections with graphite or similar before reassembly．
Tightening torques For reassembly，tighten all screws and bolts as specified in this manual． （ \Rightarrow Section 7．6，Page 66）

7．5．2 Preparing the pump casing

As an assembly aid，position four extended studs each on the two casing sides with the studs opposing each other．

1．Screw studs 902．01／27 into pump casing 101.

7.5.3 Preparing and fitting the suction cover

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.2, Page 58) have been observed/carried out.

1. Provide the single-piece suction cover with eyebolt 900.06 and forcing screws 901.44.
2. Insert O-ring 412.25/.75 into suction cover 162.
3. Version with additional suction-side wear plate 135.01 made of ceramic material: Insert wear plate 135.01 into suction cover 162. Evenly tighten grub screws 904.97.
Version with additional suction-side wear plate 135.01 made of metal: Insert wear plate 135.01 with O-ring 412.05 and gasket 411.12 into the suction cover. Tighten hexagon head bolts 901.03 / 411.04 .
4. Screw in eyebolt 900.06 and fit forcing screws 901.44.

	CAUTIONIncorrect assembly Damage to the ceramic wear plate! - Once wear plate 135.01 has been inserted into pump casing 101, undo grub screws 904.97 by one turn.

5. Insert suction cover 162 or the complete suction cover assembly into pump casing 101. Tighten hexagon nut 920.27.

7.5.4 Fitting the shaft

Version with bearing bracket P16ax

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.3, Page 59) have been observed/carried out.

1. Heat up the inner ring of rolling element bearing 322.01 to approximately $100^{\circ} \mathrm{C}$.
2. Lock inner ring 322.02 with the assembling sleeve ${ }^{23)}$ and slotted round nut 920.21.
3. Fasten four-point bearing 320.03 with slotted round nut 920.21 without lock washer.
4. Undo slotted round nut 920.21. Fit it again together with lock washer 931.01.

Version with bearing bracket P20sx

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.3, Page 59) have been observed/carried out.

1. Heat up the inner ring of rolling element bearing 322.01 to approximately $100^{\circ} \mathrm{C}$.
2. Heat up complete spherical thrust roller bearing 324.03 except its outer ring to $80^{\circ} \mathrm{C}$. Lock it with disc 550.26 , assembling sleeve ${ }^{23)}$ and slotted round nut 920.21.
3. Heat up rolling element bearing 322.02 to $80^{\circ} \mathrm{C}$. Fasten it with slotted round nut 920.21 without lock washer.
4. Undo slotted round nut 920.21. Fit it again together with lock washer 931.01.
[^13]
7.5.5 Fitting the bearing carrier

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.4, Page 59) have been observed/carried out.

1. Insert circlip 932.01.
2. Fit the outer ring of angular contact ball bearing 322.01.
3. Only for versions with bearing bracket P16ax: Slide on the outer ring of rolling element bearing 322.02.
4. Place bearing carrier 382 in a vertical position with the motor end on top.
5. Only for versions with bearing bracket P20sx: Insert springs 950.01 and the outer ring of spherical thrust roller bearing 324.03.
6. Insert pre-assembled shaft 210 into bearing carrier 382.

324.03 550.26 $322.02 \quad 920.21$
Fig. 19: Adjusting the bearing carrier for P20sx
7. Only for versions with bearing carrier P20sx: Measure dimension A. Reduce the length of the shoulder of bearing cover 360.02 with the bearing fit to A 0.3 mm .
8. Insert bush 540.23 with V-ring 411.78 and O-ring 412.43.
9. Insert and fit O-ring 412.22 into bearing cover 360.02. Verify that the oil return bores/grooves are facing downwards.
10. Tighten hexagon head bolts 901.91.
11. Secure thrower 507.02 and grub screws 904.44 with Loctite 242. Use an assembly tool ${ }^{24)}$ (see supplementary operating instructions), if required.
12. Fit keys 940.02 and secure them with adhesive tape.
13. Fit discs 550.36/37 (2 each). Verify that the disc grooves are horizontally aligned Drill a hole $1 \times M 4 \times 10$ into bearing carrier 382 for fastening purposes.
14. Insert O-rings 412.81/82. Fill the turned grooves between the O-rings with grease (2k DIN 51825).
15. Apply Loctite 270 to bolt 563.23. Screw the bolt into bearing carrier 382 .
16. Fit pump-end hexagon nut 920.23

7.5.6 Installing the bearing carrier in the bearing bracket

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.5, Page 60) have been observed/carried out.

1. Screw eyebolt 900.41 into the pump-side shaft end of pre-assembled bearing carrier 382. Suspend bearing carrier 382 from the lifting equipment.
2. Insert pre-assembled bearing carrier 382 into the vertically positioned bearing bracket 330 (with the motor end down). Observe the position of bolts 563.23 (asymmetrical).
Provide a suitable opening in the workbench to insert the shaft and support the shaft shoulder.
[^14]Verify that the integrally cast arrow in bearing cover 360.02 is located at the top. The integrally cast support foot of bearing bracket 330 is located at the bottom.
3. Slide bush 540.22 with O-ring 412.42 and V-ring 411.77 onto the shaft.
4. Fit bearing cover 360.01 with O-ring 412.24 . Verify that the oil return bores are positioned at the bottom.
5. Tighten hexagon head bolts 901.89.
6. Fit thrower 507.01; use the corresponding special tool ${ }^{25}$ (see supplementary operating instructions), if required.
7. Secure grub screws 904.31 with Loctite 242.
8. Place the bearing in a horizontal position.

7.5.7 Fitting the discharge cover

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.6, Page 60) have been observed/carried out.

1. Fit studs 902.15. Insert 4 extended studs into the 4 sides as an assembly aid.
2. Insert O-rings 412.01, 412.12 (only for discharge cover in JS1025/ CermaikPolySiC®).
3. Install the completely assembled mechanical seal. Verify that clamping ring 515 at the shaft sleeve / shaft has been completely undone. Verify that this area of the shaft and shaft sleeve is completely grease-free.
4. Fasten discharge cover 163 to bearing bracket 330 with hexagon nuts 920.15. Recommendation: Set bearing bracket 330 down in a vertical position. Attach lifting tackle to the two eyebolts of the discharge cover. Lift the discharge cover in a horizontal position together with the assembled mechanical seal and mount it on the bearing bracket via the shaft stump.

7.5.8 Installing the mechanical seal

The following rules must be observed when installing the mechanical seal:

- For installing the mechanical seal, proceed as shown in the seal installation drawing.
- Work cleanly and accurately.
- Only remove the protective wrapping of the contact faces immediately before installation takes place.
- Prevent any damage to the sealing surfaces or O-rings.
- After inserting the stationary ring of the mechanical seal, check that it is planeparallel in relation to the casing part.
- The surface of the shaft protecting sleeve must be absolutely clean and smooth, and the sleeve's mounting edge must be chamfered.
- When sliding the rotating assembly onto the shaft protecting sleeve, take appropriate steps to protect the surface of the shaft protecting sleeve from damage.
- Check the complete mechanical seal for any damage. If necessary, replace the mechanical seal.

Damage to the O-rings must be prevented by breaking all sharp edges and removing any burrs in the installation area of the mechanical seal.

- Verify the mating dimensions.
- Never use force during installation.

[^15]
Installation tolerances

- Shaft run-out: 0.05 mm
- Axial bearing clearance: 0.2 mm
- Surface quality in the area of the static O-ring seal: $1.6 \mu \mathrm{~m}$ as a minimum
- Vibration velocity: v $\leq 4.5 \mathrm{~mm} / \mathrm{s}$
\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.7, Page 61) have been observed and carried out.
\checkmark The contact surfaces have been cleaned and checked for any damage.
\checkmark Perpendicularity and run-out in relation to shaft axis have been checked.

	CAUTION \qquad Overheating of and damage to the mechanical seal \triangleright Never allow rings made of ethylene propylene rubber to come into contact with mineral oil or mineral grease. \triangleright O-rings made silicone rubber are not resistant to silicone oil or silicone grease.

\checkmark A thin coat of grease has been applied to O-rings for static sealing.
\checkmark Clamping ring 515 of the mechanical seal has been undone. Assembly fixtures 96-3 have been engaged in shaft sleeve 523.

1. For versions with a discharge cover with CeramikPolySiC lining: Coat the outside of seal cover 471 with an elastic sealant on MS polymer basis (e.g. Henkel Teroson - MS polymer 931, white).
For versions with a metallic or completely ceramic discharge cover: Insert O-ring 412.12 into discharge cover 163.
2. Check O-ring 412.56 on seal cover 471.
3. Align the cartridge seal with the pump cover, making sure that the flange bolt holes and connection holes are properly aligned.
4. Check O-rings 412.54/.55.

5. Gently guide the cartridge seal along the shaft.
6. Press the cartridge seal into discharge cover 163.
7. Tighten screw 914.03.
8. Only for versions with a discharge cover made of CeramikPolySiC®: Fit disc 550.01.
9. Evenly tighten the clamping ring with hexagon socket head cap screw 914.53 (for the tightening torque see stamp on clamping ring 515, sectional drawing or documentation).
10. Rotate assembly fixtures $96-3$ to disengage them, and fasten them in this position.
11. Rotate the shaft by hand to check that it turns smoothly.

7.5.8.1 Connecting the supply lines of the mechanical seal (optional)

The operational reliability of the mechanical seal will be increased if any leakage of the fluid handled into the area between the shaft sleeve and the primary/mating ring is removed by periodic flushing. For this purpose, a periodic flushing facility can be permanently connected to a water tap by a 10 mm or 12 mm pipe.

7.5.9 Fitting the impeller

P16ax V10

P20sx V11

Fig. 20: Adjusting the axial clearance
Table 21: Shaft position

Bearing bracket	Dimension $\mathbf{x}[\mathrm{mm}]$	
	Version 10	Version 11
P16ax	152,5	-
P20sx	211,5	111,5

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.8, Page 61) have been observed/carried out.

1. Adjust the shaft position to match axial dimension x (see table Shaft position).
2. Fit shaft protecting sleeve 524.01 and O-ring 412.06 .
3. Insert keys 940.01 into the shaft.
4. Fit impeller 230 with the impeller fitting and removal tool ${ }^{26)}$ (see supplementary operating instructions).
5. Insert disc 550.87 and fasten hexagon socket head cap screws 914.12.
6. Screw on impeller hub cap 260 with O-rings 412.03/.46 using the corresponding tool ${ }^{26)}$ (see supplementary operating instructions).
7. Press in the two elastomer plugs. Screw hexagon head bolt 901.87 into the impeller hub cap.
8. Verify the shaft position. Distance between impeller 230 and discharge cover $163: \leq 1.5 \mathrm{~mm}$

7.5.10 Installing the back pull-out unit

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.9, Page 63) have been observed/carried out.

1. Support foot 183 has been fitted on the baseplate. (Otherwise fasten it to the bearing bracket.)
2. Insert O-rings 412.35/50 into discharge cover 163.
[^16]| | CAUTION
 Improper removal／fitting of fragile，shock－sensitive CeramikPolySiC® components
 or linings
 Damage to the components／linings！
 \triangleright
 Never use a hammer on components made of CeramikPolySiC®，apply blows or
 press them down with force．
 \triangleright Always use suitable lifting tackle（e．g．straps，loops）for transporting
 components made of CeramikPolySiC®．
 \triangleright Never use chains to transport components made of CeramikPolySiC®． |
| :--- | :--- |

3．Carefully guide the pre－assembled pump rotor into pump casing 101．Rest the pump rotor on support foot 183．Impeller 230 must not touch suction cover 162.

4．Tighten hexagon nut 920.01 ．

7．5．11 Adjusting the diagonal clearance

	CAUTION
Non－compliance with the clearances between impeller and suction liner／plate Damage to components／linings！ \triangleright Check diagonal clearance once every 6 months of operation． \triangleright Observe the specified clearances．（ \Rightarrow Table 22）．	

The clearance between impeller 230 and wear plate 135.01 or suction cover 162 has to be adjusted to the defined values．（ \Rightarrow Table 22）

As some shaft deflection occurs during standstill，measure the clearances on the two opposite sides．The sum of these two clearances must equal twice the required clearance width．

Table 22：Axial movement，rotor adjustment

Size	Version	Bearing bracket	Clearance width s ［mm］	Clearance angle ［ ${ }^{\circ}$ ］	Axial movement
500－400－710	10	P16ax	0，5	30	1，0
500－400－713					
500－500－633			0，7	30	1，4
500－500－637					
600－600－824				20	2，0
600－600－825					
600－600－829					
700－700－923	10 ／ 11	P20sx	0，7	25	1，7
800－700－953				20	2，0
800－700－959					
900－900－1133					
900－900－1134					
900－900－1137					
900－900－1138					
900－900－1139					
800－800－934				14，5	2，8
800－800－935					
800－800－939					
800－900－883					

Fig. 21: Adjusting the diagonal clearance
\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.11, Page 64) have been observed and carried out.
\checkmark Clamping ring 515 of the mechanical seal has been undone. Assembly fixtures 96-3 have been positioned in shaft sleeve 523.

1. Slide the back pull-out unit towards the suction side as far as it will go.
2. Slide the back pull-out unit back to establish the defined clearance. (\Rightarrow Table 22)
3. Tighten hexagon nuts 920.23 .
4. Fasten the pump-end bearing carrier and motor-end bearing carrier with one hexagon head bolt 901.36 / 901.37 and one nut 920.37 / 920.36 each.
5. Fasten the pre-assembled mechanical seal to shaft 230 with clamping ring 515. (\Rightarrow Section 7.5.8, Page 61)
6. Disengage assembly fixtures $96-3$ to undo the axial lock.
7. Fit forcing screws $901.30 / .31$ at bearing bracket 330 .
8. Fit forcing screws 901.94 at bearing cover 360.01 .
9. Fit forcing screws 901.95 at bearing cover 360.02 .
10. Fasten measuring nipple SPM 720 (if any) at bearing bracket 330.
11. Fit vent plug 672.

7.5.12 Fitting the piping

Oil drain piping

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.11, Page 64) have been observed/carried out.

1. Seal pipe bend 731.31 , hexagon nipple 720.42 and plug 903.46 with Teflon tape.

Piping of the constant level oiler

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to $(\Rightarrow$ Section 7.5.11, Page 64) have been observed/carried out.

1. Fasten hexagon nipple 720.11 with sockets $731.11 / 12$ and counter nut 920.11. Verify that the installation position is horizontal.
2. Install and adjust constant level oiler 638.
3. Check the oil level.

Table 23: Oil level measured from the pump shaft centreline

Bearing bracket	Level measured from pump shaft centreline $[\mathrm{mm}]$
P16ax	111
P20sx	135

Leakage drain piping

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.11, Page 64) have been observed/carried out.

1. Fit pipe 710.22 / 710.62 / hexagon nipple 720.62 .

7.5.13 Mounting the guard

\checkmark The notes and steps stated in (\Rightarrow Section 7.5.1, Page 57) to (\Rightarrow Section 7.5.12, Page 65) have been observed/carried out.

1. Mount guard 680.11 (perforated plate) at bearing bracket 330 . To do so, drill threaded holes $12 x M 6 x 10$. Fit the section for the oil leakage drain during assembly.

7.5.14 Mounting the motor

1. Shift the motor to connect it to the pump via the coupling.
2. Fasten the motor to the baseplate.
3. Align pump and motor.
4. Connect the motor to the power supply (refer to manufacturer's product literature).

7.6 Tightening torques

	CAUTION
	Use of an impact screw driver on Norihard casings (NH 153) Damage to screws/bolts and threads! \triangleright Never use an impact screw driver. \triangleright Make sure that the studs can be screwed in easily for the entire length of the thread.

Table 24: Tightening torques for bolted/screwed connections ${ }^{27 / 288}$

Material	C35E+QT/C35+N	A4-70/A4-70	8.8 A2A/08
Stamp mark	YK/Y	A4-70/A4-70	$8.8 / 8$
Thread	Tightening torques [Nm]		
M8	-	16	23
M10	-	30	46
M12	40	55	80
M16	100	140	190
M20	190	200	380
M24	330	455	660

[^17]
7.7 Spare parts stock

7.7.1 Ordering spare parts

Always quote the following data when ordering replacement or spare parts:

- Order number
- Order item number
- Consecutive number
- Type series
- Size
- Material variant
- Seal code
- Year of construction

Refer to the name plate for all data. (\Rightarrow Section 4.4, Page 19)
Also specify the following data:

- Part number and description (\Rightarrow Section 9.1, Page 71)
- Quantity of spare parts
- Shipping address
- Mode of dispatch (freight, mail, express freight, air freight)
7.7.2 Recommended spare parts stock for 2 years' operation to DIN 24296

Table 25: Quantity of spare parts for recommended spare parts stock

Part No.	Description	Number of pumps (including stand-by pumps)							
		1	2	3	4	5	6 and 7	8 and 9	10 and more
135.01	Wear plate ${ }^{29}$	1	2	2	2	3	3	4	50\%
210	Shaft	1	1	1	1	2	2	2	20\%
230	Impeller	1	1	1	1	2	2	2	20\%
$\begin{aligned} & 320.02 \\ & \text { or } \\ & 324.03 \end{aligned}$	Fixed bearing	1	1	1	2	2	2	3	25\%
322.01	Cylindrical roller bearing	1	1	1	2	2	2	3	25\%
322.02	Cylindrical roller bearing	1	1	1	2	2	2	3	25\%
330	Bearing bracket, complete	-	-	-	-	-	-	1	2
-	Sealing elements for pump casing (set)	2	4	6	8	8	9	12	150\%
For variants with mechanical seal									
433.01	Mechanical seal, complete ${ }^{30}$	1	1	1	2	2	2	3	25\%
	Primary ring ${ }^{\text {30 }}$	1	2	3	4	5	6	7	90\%
	Mating ring ${ }^{30}$	1	2	3	4	5	6	7	90\%
	Secondary seal at mating ring ${ }^{30}$	1	2	3	4	5	7	9	100\%
	Secondary seal at primary ring ${ }^{30}$	1	2	3	4	5	7	9	100\%
	Spring (set) ${ }^{30}$	1	1	1	1	1	2	2	20\%

[^18]
7.7.3 Interchangeability of pump components

Components featuring the same number in a column are interchangeable.
Table 26: Interchangeability of pump components

$\begin{aligned} & \stackrel{y}{N} \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{\delta}{n} \\ & \stackrel{.}{4} \\ & > \end{aligned}$	Description													
					$\begin{aligned} & \stackrel{4}{\pi} \\ & \stackrel{\pi}{n} \\ & \vdots \end{aligned}$										
		Part number													
		¢	¢	$\stackrel{\text { ¢ }}{\bullet}$	$\frac{0}{n}$	이N	\%	$$	N. O. O	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\underset{\sim}{\underset{\sim}{N}} \underset{\underset{\sim}{N}}{ }$	이	$\underset{\sim}{\infty}$	N	$\begin{aligned} & \text { © } \\ & \text { in } \\ & \text { in } \end{aligned}$
Bearing bracket P16ax															
500-400-710	10	1	1	1	3	9	2	3	1	2	-	1	2	3	2
500-400-713	10	1	2	1	3	10	2	3	1	2	-	1	2	3	2
500-500-633	10	2	3	2	4	11	3	3	1	2	-	2	2	4	2
500-500-637	10	2	4	2	4	12	3	3	1	2	-	2	2	4	2
600-600-824	10	3	5	3	5	13	4	3	1	2	-	3	2	5	2
600-600-825	10	3	6	3	5	14	4	3	1	2	-	3	2	5	2
600-600-829	10	3	5	3	5	26	4	3	1	2	-	3	2	5	2
Bearing bracket P20sx															
700-700-923	10	4	7	4	6	15	5	4	2	-	3	4	3	6	3
700-700-923	11	4	7	5	7	15	5	4	2	-	3	5	3	-	3
800-700-953	10	5	8	6	6	16	6	4	2	-	3	6	3	6	3
800-700-953	11	5	8	7	7	16	6	4	2	-	3	7	3	-	3
800-700-959	10	5	8	6	6	17	6	4	2	-	3	6	3	6	3
800-700-959	11	5	8	7	7	26	7	4	2	-	3	7	3	-	3
800-900-883	10	6	9	8	8	18	8	4	2	-	3	8	3	6	3
800-900-883	11	6	10	9	9	18	8	4	2	-	3	9	3	-	3
800-800-934	10	7	9	8	6	19	10	4	2	-	3	8	3	6	3
800-800-934	11	7	10	9	7	19	10	4	2	-	3	9	3	-	3
800-800-935	11	7	10	9	7	20	10	4	2	-	3	9	3	-	3
800-800-939	10	7	9	8	6	21	10	4	2	-	3	8	3	6	3
800-800-939	11	7	10	9	7	27	11	4	2	-	3	9	3	6	3
900-900-1133	10	8	11	10	8	22	9	4	2	-	3	10	3	6	3
900-900-1133	11	8	12	11	9	22	9	4	2	-	3	11	3	-	3
900-900-1134	11	8	14	11	9	23	9	4	2	-	3	11	3	-	3
900-900-1137	11	8	14	11	9	27	10	4	2	-	3	11	3	-	3
900-900-1138	10	8	13	10	8	24	10	4	2	-	3	10	3	6	3
900-900-1138	11	8	14	11	9	24	10	4	2	-	3	11	3	-	3
900-900-1139	10	8	11	10	8	25	10	4	2	-	3	10	3	6	3
900-900-1139	11	8	12	11	9	25	12	4	2	-	3	11	3	-	4

8 Trouble-shooting

| Improper work to remedy faults |
| :--- | :--- |
| Risk of injury! |
| \triangleright For any work performed to remedy faults, observe the relevant information |
| given in this operating manual and/or in the product literature provided by the |
| accessories manufacturer. |

If problems occur that are not described in the following table, consultation with the KSB service is required.
A Pump delivers insufficient flow rate
B Motor is overloaded
C Excessive discharge pressure
D Increased bearing temperature
E Leakage at the pump
F Excessive leakage at the shaft seal
G Vibrations during pump operation
H Impermissible temperature increase in the pump
Table 27: Trouble-shooting

A	\mathbf{B}	C	D	E	F	\mathbf{G}	H	Possible cause	Remedy ${ }^{31)}$
\boldsymbol{x}	-	-	-	-	-	-	-	Pump delivers against an excessively high pressure.	Re-adjust to duty point.
\boldsymbol{x}	-	-	-	-	-	-	-	Excessively high back pressure	Check system for impurities. Increase speed (turbine, I.C. engine).
\boldsymbol{x}	-	-	-	-	-	\boldsymbol{x}	\boldsymbol{x}	Pump or piping are not completely vented or primed.	Vent and/or prime.
\boldsymbol{x}	-	-	-	-	-	-	-	Supply line or impeller clogged	Remove deposits in the pump and/or piping.
\boldsymbol{x}	-	-	-	-	-	-	-	Formation of air pockets in the piping	Alter piping layout. Fit vent valve.
-	-	-	\boldsymbol{x}	-	\boldsymbol{x}	\boldsymbol{x}	-	Pump is warped or sympathetic vibrations in the piping.	Check the piping connections and secure fixing of pump; if required, reduce distances between the pipe clamps. Fix the pipelines using anti-vibration material.
\boldsymbol{x}	-	-	-	-	-	\boldsymbol{x}	\boldsymbol{x}	Suction lift is too high/ NPSH	

[^19]| A | B | C | D | E | F | G | H | Possible cause | Remedy ${ }^{31)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x | - | - | - | - | - | x | - | Wear of internal components | Replace worn components by new ones. |
| - | x | - | - | - | - | x | - | Pump back pressure is lower than specified in the purchase order. | Re-adjust to duty point. |
| - | x | - | - | - | - | - | - | Density or viscosity of fluid handled higher than stated in purchase order | Contact KSB. |
| - | - | - | - | - | x | - | - | Use of unsuitable materials | Change the material combination. |
| - | x | x | - | - | - | - | - | Speed is too high. | Reduce speed. |
| - | - | - | - | x | - | - | - | Tie bolts/sealing element defective | Fit new seal between volute casing and discharge cover. Re-tighten the bolts. |
| - | - | - | - | - | x | - | - | Worn shaft seal | Fit new shaft seal. |
| x | - | - | - | - | x | - | - | Score marks or roughness on shaft protecting sleeve / shaft sleeve | Replace shaft protecting sleeve/shaft sleeve. Replace shaft seal.
 Check balancing line. Check throttling bush/throttling sleeve clearances. |
| - | - | - | - | - | x | - | - | Lack of cooling liquid or dirty cooling chamber | Increase cooling liquid quantity. Clean out cooling chamber. Purify/clean cooling liquid. |
| - | - | - | - | - | x | - | - | Stuffing box cover and/or seal cover have been tightened incorrectly; wrong packing material. | Correct. |
| - | - | - | - | - | x | - | - | Vibrations during pump operation | Correct the suction conditions.
 Re-align the pump set.
 Re-balance the impeller.
 Increase pressure at the pump suction nozzle. |
| - | - | - | x | - | x | x | - | The pump set is misaligned. | Check the coupling; realign if required. |
| - | - | - | x | - | - | - | - | Insufficient or excessive quantity of lubricant or unsuitable lubricant. | Top up, reduce or change lubricant. |
| - | - | - | x | - | - | - | - | Non-compliance with specified coupling distance | Correct the distance according to general arrangement drawing. |
| - | x | - | - | - | - | - | - | Operating voltage is too low. | Increase the voltage. Check voltage drop in the power cable. |
| - | - | - | - | - | - | x | - | Rotor out of balance | Clean rotor. Re-balance rotor. |

9 Related Documents

9.1 General assembly drawing with list of components

9.1.1 Pump with bearing bracket P16ax V10

Fig. 22: General assembly drawing of pump with bearing bracket P16ax V10
Table 28: List of components

Part No.	Description	Part No.	Description
101	Pump casing	563.23	Bolt/stud
162	Suction cover	$59-47.06$	Lifting lug
163	Discharge cover	638	Constant level oiler
183	Support foot	672	Vent
210	Shaft	680.11	Guard
230	Impeller	710.22	Pipe

Part No.	Description	Part No.	Description
260	Impeller hub cap	720.11	Fitting
320.03	Rolling element bearing	$731.11 / .12$	Pipe union
$322.01 / .02$	Radial roller bearing	$900.06 / .41$	Screw
330	Bearing bracket	$901.14 / .30 / .31 / .36 / .37 / .44$ $/ .64 / .87 / .89 / .91 / .94 / .95$	Hexagon head bolt
$360.01 / .02$	Bearing cover	$902.01 / .15 / .27$	Stud
382	Bearing carrier	903.46	Screw plug
400.65	Gasket	$904.31 / .44$	Grub screw
$411.46 / .77 / .78$	Joint ring	$914.12 / .36 / .37$	Hexagon socket head cap screw
$412.01 / .03 / .06 / .22 / .24 / .25$	O-ring	$920.01 / .11 / .15 / .21 / .23 / .27$	Nut
$/ .35 / .42 / .43 / .46 / .50 / .75 / .8$			
$1 / .82$	Thrower	$930.64 / .37 / .64$	Safety device
$507.01 / .02$	Shaft protecting sleeve	931.01	Lock washer
524.01	Bush	932.01	Circlip
$540.22 / .23$	Disc	$940.01 / .02$	Key
$550.36 / .37 / .74 / .87$			

9.1.2 Pumps with bearing bracket P16ax V10 (sizes 500-400-0710, 500-400-0713, 500-500-0633, 500-500-0637)

Fig. 23: General assembly drawing of pump with bearing bracket P16ax V10 (sizes 500-400-0710, 500-400-0713, 500-500-0633, 500-500-0637)

Table 29: List of components

Part No.	Description	Part No.	Description
101	Pump casing	550.23/.36/.37/.74	Disc
135.01	Wear plate	563.23	Pin
162	Suction cover	638	Constant level oiler
163	Discharge cover	672	Vent
164.02	Inspection cover	680.11	Guard
183	Support foot	710.22	Pipe
210	Shaft	720.11/.42	Special pipe part
230	Impeller	731.11/.12/.31	Pipe union
260	Impeller hub cap	900.06/.41	Bolt
320.03	Rolling element bearings	$\begin{aligned} & \text { 901.03/.14/.22/.30/.31/.36 } \\ & / .37 / .44 / .64 / .87 / .89 / .91 / .9 \\ & 4 / .95 \end{aligned}$	Hexagon head bolt
322.01/.02	Radial roller bearing	902.01/.17/.27	Stud
330	Bearing bracket	903.01/.03/.04/.08/.46	Screw plug

Part No.	Description	Part No.	Description
$360.01 / .02$	Bearing cover	$904.31 / .44$	Grub screw
382	Bearing carrier	$914.12 / .36 / .37$	Hexagon socket head cap screw
$400.15 / .65$	Gasket	$920.01 / .11 / .17 / .21 / .23 / .27$	Nut
411.01/.03/.04/.08/.10/.12 $.46 / .57 / .77 / .78$	Seal ring	930.64	Safety device
$412.01 / .03 / .05 / .06 / .12 / .22$	O-ring	931.01	Lock washer
$.24 / .42 / .43 / .46 / .81 / .82$		932.01	Circlip
$507.01 / .02$	Thrower	$940.01 / .02$	Key
524.01	Shaft protecting sleeve		
$540.22 / .23$	Bush		

9.1.3 Pump with bearing bracket P20sx V10

Fig. 24: General assembly drawing of pump with bearing bracket P20sx V10

Table 30: List of components

Part No.	Description	Part No.	Description
101	Pump casing	$59-47.06 / .41$	Lifting lug
162	Suction cover	638	Constant level oiler
163	Discharge cover	672	Vent
183	Support foot	680.11	Guard
210	Shaft	710.62	Pipe
230	Impeller	$720.11 / .42 / .48 / .49$	Fitting
260	Impeller hub cap	$731.11 / .12 / .31$	Pipe union
$322.01 / .02$	Radial roller bearing	$900.06 / .41$	Screw
324.03	Thrust roller bearing	$901.14 / .30 / .31 / .36 / .37 / .44$	Hexagon head bolt
330	Bearing bracket	$902 / .87 / .89 / .91 / .94 / .95$	
$360.01 / .02$	Bearing cover	903.46	Stud
382	Bearing carrier	$904.31 / .44$	Screw plug
400.65	Gasket	$914.03 / .12 / .36 / .37$	Hrub screw
$411.77 / .87$	Joint ring	$920.01 / .11 / .15 / .21 / .23 / .27$	Nut
$1.36 / .37 / .64$			
$412.01 / .03 / .06 / .22 / .24 / .25$	O-ring	930.64	Safety device
$/ .31 / .35 / .42 / .43 / .46 / .50 / .7$			
$5 / .81 / .82$		931.01	Lock washer
$507.01 / .02$	Thrower	932.01	Circlip
524.01	Shaft protecting sleeve	$940.01 / .02$	Spring
$540.22 / .23$	Bush	950.01	
$550.26 / .36 / .37 / .74 / .87$	Disc		
563.23	Bolt/stud		

9.1.4 Pump with bearing bracket P20sx V11

Fig. 25: General assembly drawing of pump with bearing bracket P20sx V11
Table 31: List of components

Part No.	Description	Part No.	Description
101	Pump casing	$59-47.06 / .41$	Lifting lug
162	Suction cover	638	Constant level oiler
163	Discharge cover	672	Vent
183	Support foot	680.11	Guard
210	Shaft	$720.11 / .42 / .48 / .49 / .62$	Special pipe part
230	Impeller	$731.11 / .12 / .31$	Pipe union
260	Impeller hub cap	900.41	Bolt
$322.01 / .02$	Radial roller bearing	$901.14 / .30 . / 31 / .36 / .37 / .44$	Hexagon head bolt
324.03	Thrust roller bearing	$902.01 / .15 / .27$	Stud
330	Bearing bracket	903.46	Screw plug
$360.01 / .02$	Bearing cover	$904.31 / .44$	Grub screw
382	Bearing carrier	$914.12 / .36 / .37$	Hexagon socket head cap screw
400.65	Gasket	$920.01 / .15 / .21 / .23 / .27 / .36$	Nut
$411.46 / .77 / .78$	Seal ring	930.64	
$412.03 / .22 / .24 / .25 / .42 / .43$	O-ring	931.01	Safety device
$/ .46 / .50 / .75 / .81 / .82$		Lock washer	

Part No.	Description	Part No.	Description
$507.01 / .02$	Thrower	932.01	Circlip
$540.22 / .23$	Bush	$940.01 / .02$	Key
$550.26 / .36 / .37 / .74 / .87$	Disc	950.01	Spring
563.23	Pin		

9.1.5 Shaft seals

Fig. 26: Mechanical seals 4K-160 and 4K-200

Fig. 27: Mechanical seal $4 K-253$

9.1.6 Shaft seal installation accessories

Fig. 28: Installation accessories a) Mechanical seal 4K-160/-200 (for V10) b) Mechanical seal 4K-253 (for V11)

9.1.7 List of components

Table 32: List of components ${ }^{33)}$

Part No.	Comprising	Description
101	101	Pump casing
	411.01/.03/.08	Joint ring
	902.01/.27	Stud
	903.01/.03/.08	Screw plug
	920.01/.27	Hexagon head bolt
135.01	135.01	Wear plate
	411.12/.13	Joint ring
	412.05	O-ring
	901.03	Hexagon head bolt
162	162	Suction cover
	411.57	Joint ring
	412.25/.75	O-ring
	59-47.06 ${ }^{34)}$	Lifting lug
	$900.06{ }^{35}$	Eyebolt
	904.97	Grub screw
163	163	Discharge cover
	412.12/.50	O-ring
	902.15	Stud
	920.15	Hexagon nut
183	183	Support foot
	901.64	Hexagon head bolt
	920.64	Hexagon nut
	930.64	Spring washer
210	210	Shaft
	940.01/.02	Key
230	230	Impeller

[^20]| Part No. | Comprising | Description |
| :---: | :---: | :---: |
| 230 | 412.03 ${ }^{36}$ | O-ring |
| 260 | 260 | Impeller hub cap |
| | 400.65 | Sealing element |
| | 412.03/.46 | O-ring |
| | 550.87 | Disc |
| | 901.87 | Hexagon head bolt |
| | 914.12 | Hexagon socket head cap screw |
| 330 | 330 | Bearing bracket |
| | 59-47.41 ${ }^{14)}$ | Lifting lug |
| | 720.62 | Hexagon nipple |
| | 900.41^{35} | Eyebolt |
| | 901.30/.31 | Hexagon head bolt |
| 382 | 382 | Bearing carrier |
| | 322.01/.02 | Cylindrical roller bearing |
| | 320.03 ${ }^{35}$ | Angular contact ball bearing |
| | $324.03^{34)}$ | Spherical thrust roller bearing |
| | 360.01/.02 | Bearing cover |
| | 411.46/.77/.78 | V-ring |
| | 412.22/.24/.42/.43/.81/.82 | O-ring |
| | 507.01/.02/.99 | Thrower |
| | 540.22/.23 | Bush |
| | 550.36/.37 | Disc |
| | 563.23 | Pin |
| | 638 | Constant level oiler |
| | 672 | Vent plug |
| | 720.11/.42 | Hexagon nipple |
| | 731.11/.12/.31 | Socket |
| | 901.36/.37/.89/.91/.94/.95/.99 | Hexagon head bolt |
| | 903.46 | Screw plug |
| | 904.31/.44 | Grub screw |
| | 914.36/.37 | Hexagon socket head cap screw |
| | 920.21/.23/.36/.37 | Hexagon nut |
| | 931.01 | Lock washer |
| | 932.01 | Circlip |
| | 950.01 | Compression spring |
| 433.02 | 433.02 | Mechanical seal |
| | 412.52/.53/.54/.55/.56 | O-ring |
| | 45-4 | Spacer |
| | 471 | Seal cover |
| | 472 | Primary ring |
| | 474 | Thrust ring |
| | 475 | Mating ring |
| | 477 | Spiral spring |
| | 515 | Clamping ring |
| | 523 | Shaft sleeve |
| | 562.52/.53 | Parallel pin |
| | 550.01 | Disc |

36
Except for P20sx V11

Part No.	Comprising	Description
433.02	$914.03 / .52 / .53 / .54 / .55$	Hexagon socket head cap screw
	$96-3$	Assembly fixture
$524.01^{36)}$	524.01	Shaft protecting sleeve
680.11	680.11	Guard
	550.74	Disc
	901.14	Hexagon head bolt
710.22	710.22	Pipe

9.2 Recommendations for preparing and processing concrete for grouting the foundation frame

General

Use factory-produced, ready-made concrete to DIN EN 206-1/ DIN 1045 which is processed at the site of use in a flowable consistency. Apply suitable measures to produce and process a concrete which does not tend to segregate and is nonshrinking in its pre-hardened condition, and which has low shrinkage characteristics in hardened condition.

Concrete properties

Table 33: Quality requirements for producing concrete

Characteristic	Value
Cement	Portland cement CEM1-32.5 R to DIN EN 197-1
Aggregate	Sand, gravel, chips to DIN EN 12620
Granulometric composition	Particle-size distribution range 3 A/B, maximum particle size 32 to DIN 1045
Admixtures	Approved melamine resin base fluxing agent
Water/cement factor	≤ 0.45
Compressive strength	C20/25 to DIN EN 206-1
Consistency at the building site	Concrete consistency without fluxing agent Plastic consistency range a 37) $=36-40 \mathrm{~cm}$
Consistency at the building site	Concrete consistency after fluxing agent has been added Flowable consistency range $\mathrm{a}^{377}=50-55 \mathrm{~cm}$

For the right dose of fluxing agent refer to the Guideline for Flow Concrete by the German Committee for Structural Concrete and the technical instruction leaflet of the fluxing agent producer.

Processing

Preparation - Free the installation surface, the existing foundation, anchor bolt holes etc. in the vertical and horizontal surfaces from oil, dust, dirt, concrete residues and fine mortar of little strength. Thoroughly clean these areas with water, soak them, let the surfaces dry again and remove all surface water.

- Also free the bottom of the machinery, the anchor bolts and the crane rails from oil, grease and dust.
- Protect the parts and foundations, etc. to be grouted from high heat and frost.
- Adjust the parts to be grouted. Lightly oil any adjustment tools which will be removed later.
- Verify that the shuttering is tightly sealed and does not give way. If necessary, replace or seal the shuttering.
- Prevent water from being absorbed by wooden shuttering by soaking the shuttering beforehand or by using suitable separating agents.
Producing the processing
- Immediately before pouring the concrete, produce a processing consistency (flowable consistency range): $a^{37)}=50-55 \mathrm{~cm}$) with a fluxing agent in accordance with the Guideline for Flow Concrete by the German Committee for Structural Concrete.

Shuttering (if required)	- Verify that the shuttering is tightly sealed and does not give way. If necessary, replace or seal the shuttering.
	- Prevent water from being absorbed by wooden shuttering by soaking the shuttering beforehand or by using suitable separating agents.
Producing the processing consistency	- Immediately before pouring the concrete, produce a processing consistency (flowable consistency range): $a^{37)}=50-55 \mathrm{~cm}$) with a fluxing agent in accordance with the Guideline for Flow Concrete by the German Committee for Structural Concrete.
Transport	- Chute
	- Crane bucket
	- Concrete pump
Pouring process	- Pour the concrete without interruptions.
Compacting	- Vent the concrete by rodding and/or lightly shaking/vibrating it.

[^21]
Curing

After grouting, prevent evaporation of water from free surfaces. To do so, a foil or a wet textile fabric can be placed on the concrete as soon as the concrete has become mat (approximately 30 to 60 minutes after grouting).

Table 34: Minimum curing time

Ambient conditions	Concrete temperature or mean air temperature	Curing time in days ${ }^{\text {38) }}$
Favourable	$\geq 10^{\circ} \mathrm{C}$	2
- protected from direct sun exposure - and wind - continuous relative humidity $\geq 80 \%$	$>10^{\circ} \mathrm{C}$	4
Normal	$\geq 10^{\circ} \mathrm{C}$	3
- medium sun exposure - and/or wind - and/or relative humidity $\geq 50 \%$	$<10^{\circ} \mathrm{C}$	6
Unfavourable	$\leq 10^{\circ} \mathrm{C}$	4
- strong sun exposure - and/or strong winds - and/or relative humidity < 50%	$>10^{\circ} \mathrm{C}$	8

Load

The strength development of concrete depends on the temperature. At lower temperatures the strength develops slower, which means it takes longer until the concrete can be subjected to any loads.

Finish seal

After curing, the concrete surface can be sealed in the same way as the foundation surfaces. Observe the technical instruction leaflet of the concrete sealant. Concrete which is produced and processed in accordance with these recommendations is resistant against very strong chemical attacks in accordance with DIN 4030.

[^22]
10 UK Declaration of Conformity

Manufacturer:
KSB SE \& Co. KGaA
Johann-Klein-Straße 9
67227 Frankenthal (Germany)
This UK Declaration of Conformity is issued under the sole responsibility of the manufacturer.
The manufacturer herewith declares that the product:

KWP, KWPR, KWP-Bloc

KSB order number:

- is in conformity with the provisions of the following directives / regulations as amended from time to time:
- Pump (set): Supply of Machinery (Safety) Regulations 2008
- Electrical components ${ }^{39}$): The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012
The manufacturer also declares that
- the following harmonised international standards ${ }^{40)}$ have been applied:
- ISO 12100
- EN 809

Person authorised to compile the technical file:
Name
Function
Address (company)
Address (street, No.)
Address (post or ZIP code, city) (country)
The UK Declaration of Conformity was issued in/on:
Place, date
\qquad 41). \qquad
Name
Function
Company
Address

[^23]
11 Certificate of Decontamination

Type:
Order number /
Order item number ${ }^{42)}$:
Delivery date:
\qquad
\qquad
\qquad
Application:
Fluid handled ${ }^{42)}$:

Please tick where applicable ${ }^{42)}$:

Reason for return: ${ }^{42)}$:
Comments:

The product / accessories have been carefully drained, cleaned and decontaminated inside and outside prior to dispatch / placing at your disposal.
We herewith declare that this product is free from hazardous chemicals and biological and radioactive substances.
For mag-drive pumps, the inner rotor unit (impeller, casing cover, bearing ring carrier, plain bearing, inner rotor) has been removed from the pump and cleaned. In cases of containment shroud leakage, the outer rotor, bearing bracket lantern, leakage barrier and bearing bracket or intermediate piece have also been cleaned.
For canned motor pumps, the rotor and plain bearing have been removed from the pump for cleaning. In cases of leakage at the stator can, the stator space has been examined for fluid leakage; if fluid handled has penetrated the stator space, it has been removed.
$\square \quad$ No special safety precautions are required for further handling.
$\square \quad$ The following safety precautions are required for flushing fluids, fluid residues and disposal:

We confirm that the above data and information are correct and complete and that dispatch is effected in accordance with the relevant legal provisions.

Place, date and signature
Address
Company stamp

[^24]
Index

A

Abrasive fluids 45
Absorber recirculation pumps 42
Applications 9
Auxiliary connections 30

B

Back pull-out unit 63
Bearing assembly 19
Bearing temperature 49

C

Certificate of Decontamination 84
Commissioning 37
Configuration and function 22
Constant level oiler 37
Setting 65
Contact guard 23
Coupling 23, 50
Coupling alignment 31, 32

D

Design 19
Direction of rotation 36
Dismantling 53
Disposal 16
Drive 23

E

Event of damage 7
Ordering spare parts 67
Explosion protection 24, 30, 33, 34, 35, 36, 39, 40, 43, 47, 48, 49, 50, 51

F

Faults
Causes and remedies 69
Filter 27, 50
Final check 40
Flow rate 44
Fluid handled
Density 45
Frequency of starts 43, 44

I

Impeller type 19
Installation
Installation on a foundation 25
Installation at site 24
Intended use 9
Interchangeability of pump components 68

K

Key to safety symbols/markings 8

M

Maintenance 48
Mechanical seal 41
Monitoring equipment 12
Movement, rotor adjustment 64

N

Name plate 19
Noise characteristics 23

0

Oil lubrication
Intervals 51
Oil quality 51
Operating limits 43
Order number 7
Other applicable documents 7

P

Partly completed machinery 7
Permissible forces and moments at the pump nozzles 27
Piping 26
Preservation 15, 45
Priming and venting 39
Product description 17, 21
Pump casing 19

R

Reassembly 53
Return to supplier 15
Returning to service 46
Running noises 48, 49

S

Safety 9
Safety awareness 10
Scope of supply 23
Shaft seal 20
Shutdown 42, 45
Spare part
Ordering spare parts 67
Special accessories 23
Start-up 41
Storage 15, 45

T

Temperature limits 12
Tightening torques 66
Transport 13

W

Warnings 8
Warranty claims 7
Water cooling 40

KSB SE \& Co. KGaA
Johann-Klein-Straße 9•67227 Frankenthal (Germany)
Tel. +49 6233 86-0
www.ksb.com

[^0]: 1 If included in agreed scope of supply

[^1]: 2 Subject to further limitations for mechanical seal temperature rise
 ${ }^{3}$ Depending on the material variant

[^2]: 4 K defines a suction cover in GJS-400-18-LT/ CeramikPolySiC for pumps without a separate wear plate.

[^3]: 5 Blank

[^4]: 6 To DIN 5412
 7 To DIN 628
 8 To DIN 728
 9 Formerly JL1040

[^5]: 10 K defines a suction cover in JS1025/ CeramikPolySiC® for pumps without a separate wear plate Formerly JL1040

[^6]: 12 Surface sound pressure level as per ISO 3744 and DIN EN ISO 20361 ; valid for a pump operating range of Q/ QBEP = 0.8-1.1 and non-cavitating operation. If noise levels are to be guaranteed: Add +3 dB for measuring and constructional tolerance.

[^7]: 13 For temperatures $>20^{\circ} \mathrm{C}$: adjust the values in accordance with the associated temperature correction diagram (correction coefficient for material variants DDDD, DUUD, DMKM, DKKM (NORIDUR)).

[^8]: 14 Application range: up to $200^{\circ} \mathrm{C}$ (without reduction); for other sizes please contact KSB

[^9]: 15 For compliance with UK Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres Regulations 2016. Higher ambient temperature possible in individual cases, see data sheet and name plate.

[^10]: 16 Minimum flow rate
 17 Best efficiency point
 18 Maximum flow rate

[^11]: At temperatures up to $90^{\circ} \mathrm{C}$ at the bearing
 At least once a year
 21 For ambient temperatures below $0^{\circ} \mathrm{C}$ use a different suitable type of lubricating oil. Contact the manufacturer.

[^12]: 22 Special tool (available as accessory)

[^13]: 23
 Special tool

[^14]: 24 Special tool (available as accessory)

[^15]: 25 Special tool (available as accessory)

[^16]: 26 Special tool (available as accessory)

[^17]: 27 For unlubricated bolts/screws at room temperature
 28 After repeated tightening of the threads and in case of good lubrication reduce the values by 15 to 20%

[^18]: 29 If any
 30
 Optiona

[^19]: 31 Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure.
 32
 Contact KSB.

[^20]: 33 Depending on the design
 34 For P20sx only
 35 For P16ax only

[^21]: 37 Dimension "a" is the propagation value which can be determined by means of a propagation test (to DIN 1048).

[^22]: 38 Extend the curing time as follows: In the event of frost, add the number of frost days. If retarded concrete is used, add the retardation period. If fly ash has been taken into account in the cement content or water/cement factor, add 2 days.

[^23]: 39 Where applicable
 40 Apart from the standards listed here referring to the Supply of Machinery (Safety) Regulations 2008, further standards are observed for explosion-proof versions (Equipment and Protective Systems Intended for use in Potentially Explosive Atmospheres Regulations 2016) as applicable and are listed in the legally binding UK Declaration of Conformity.
 ${ }^{41}$ A signed, legally binding UK Declaration of Conformity is supplied with the product.

[^24]: 42 Required field

