In-line Twin Pump

Etaline Z

Installation/Operating Manual

Legal information/Copyright Installation/Operating Manual Etaline Z Original operating manual All rights reserved. The contents provided herein must neither be distributed, copied, reproduced, edited or processed for any other purpose, nor otherwise transmitted, published or made available to a third party without the manufacturer's express written consent. Subject to technical modification without prior notice.

© KSB SE & Co. KGaA, Frankenthal 16/06/2022

Contents

	Glo	ssary	5
1	Ger	neral	6
-	1.1	Principles	
	1.2	Installation of partly completed machinery	
	1.3	Target group	
	1.4	Other applicable documents	
	1.5	Symbols	
	1.6	Key to safety symbols/markings	
2	Saf	ety	Ω
_	2.1	General	
	2.1	Intended use	
	2.3	Personnel qualification and training	
	2.4	Consequences and risks caused by non-compliance with this manual	
	2.5	Safety awareness	
	2.6	Safety information for the operator/user	
	2.7	Safety information for maintenance, inspection and installation	
	2.8	Unauthorised modes of operation	
	2.9	Explosion protection	
		2.9.1 Marking	
		2.9.2 Temperature limits	
		2.9.3 Monitoring equipment	
		2.9.4 Operating limits	11
3	Tra	nsport/Storage/Disposal	12
	3.1	Checking the condition upon delivery	12
	3.2	Transport	12
	3.3	Storage/preservation	13
	3.4	Return to supplier	13
	3.5	Disposal	14
4	Des	cription of the Pump (Set)	15
	4.1	General	15
	4.2	Product information	15
		4.2.1 Product information as per Regulation No. 1907/2006 (REACH)	
		4.2.2 Product information as per Ecodesign for Energy-Related Products Regulations 2010	15
	4.3	3	
	4.4	Name plate	
	4.5	Design details	
	4.6	Configuration and function	
	4.7	Noise characteristics	
	4.8	Scope of supply	
	4.9	Dimensions and weights	20
5	Inst	allation at Siteallation at Site	21
	5.1	Checks to be carried out prior to installation	21
	5.2	Installing the pump set: twin pumps	21
	5.3	Piping	
		5.3.1 Connecting the piping	
		5.3.2 Permissible forces and moments at the pump nozzles	
		5.3.3 Vacuum balance line	
	5.4	Enclosure/insulation	
	5.5	Electrical connection	
	ر. ر	5.5.1 Setting the time relay	
		5.5.2 Earthing	

		5.5.3 Connecting the motor	28
	5.6	Checking the direction of rotation	29
6	Con	mmissioning/Start-up/Shutdown	30
	6.1	Commissioning/Start-up	
		6.1.1 Prerequisites for commissioning/start-up	
		6.1.2 Filling in lubricants	
		6.1.3 Checking the shaft seal	30
		6.1.4 Priming and venting the pump	
		6.1.5 Start-up	
		6.1.6 Shutdown	
	6.2		
		6.2.1 Ambient temperature	
		6.2.2 Frequency of starts	
	6.3	6.2.3 Fluid handled	
	6.3	Shutdown/storage/preservation	
	<i>C</i> 1	6.3.1 Measures to be taken for shutdown	
	6.4	Returning to service	
7	Ser	vicing/Maintenance	
	7.1	Safety regulations	37
	7.2	Servicing/Inspection	
		7.2.1 Supervision of operation	
		7.2.2 Inspection work	
	7.3	Drainage/cleaning	
	7.4	Dismantling the pump set	
		7.4.1 General information/Safety regulations	
		7.4.2 Preparing the pump set	
		7.4.3 Dismantling the complete pump set	
		7.4.4 Removing the motor	
		7.4.5 Removing the back pull-out unit	
		7.4.7 Removing the mechanical seal	
	7.5	Reassembling the pump set	
	7.5	7.5.1 General information/Safety regulations	
		7.5.2 Installing the mechanical seal	
		7.5.3 Fitting the impeller	
		7.5.4 Installing the back pull-out unit	46
		7.5.5 Mounting the motor	46
	7.6	Tightening torques	48
	7.7	Spare parts stock	49
		7.7.1 Ordering spare parts	
		7.7.2 Recommended spare parts stock	
		7.7.3 Interchangeability of Etaline Z, Etaline and Etabloc pump components	50
8	Tro	uble-shooting	52
9	Rol:	ated Documents	5/
9	9.1	Exploded view and list of components	
	9.1	9.1.1 Variant with bolted casing cover	
		9.1.2 Variant with clamped casing cover	
	9.2	General assembly drawing with list of components	
10		Declaration of Conformity	
10		•	
11		tificate of Decontamination	
	Ind	ex	61

Glossary

ACS

French drinking water regulations (ACS = Attestation de Conformité Sanitaire)

Back pull-out unit

Pump without pump casing; partly completed machinery

Certificate of decontamination

A certificate of decontamination is enclosed by the customer when returning the product to the manufacturer to certify that the product has been properly drained to eliminate any environmental and health hazards arising from components in contact with the fluid handled.

Close-coupled design

Motor directly fitted to the pump via a flange or a drive lantern

Discharge line

The pipeline which is connected to the discharge nozzle

Hydraulic system

The part of the pump in which the kinetic energy is converted into pressure energy

IE3

Efficiency class to IEC 60034-30: 3 = Premium Efficiency (IE = International Efficiency)

In-line design

A pump whose suction and discharge nozzle are arranged opposite each other and have the same nominal diameter.

Pool of pumps

Customers/operators' pumps which are purchased and stored regardless of their later use.

Pump

Machine without drive, additional components or accessories

Pump set

Complete pump set consisting of pump, drive, additional components and accessories

Suction lift line/suction head line

The pipeline which is connected to the suction nozzle

UBA

German drinking water regulations to German Environment Agency

WRAS

Approved by all water suppliers in the UK (WRAS = Water Regulations Advisory Scheme)

1 General

1.1 Principles

This operating manual is valid for the type series and variants indicated on the front cover.

The operating manual describes the proper and safe use of this equipment in all phases of operation.

The name plate indicates the type series and size, the main operating data, the order number and the order item number. The order number and order item number clearly identify the pump set and serve as identification for all further business processes.

In the event of damage, immediately contact your nearest KSB service facility to maintain the right to claim under warranty.

1.2 Installation of partly completed machinery

To install partly completed machinery supplied by KSB refer to the sub-sections under Servicing/Maintenance.

1.3 Target group

This operating manual is aimed at the target group of trained and qualified specialist technical personnel. (⇒ Section 2.3, Page 8)

1.4 Other applicable documents

Table 1: Overview of other applicable documents

Document	Contents
Data sheet	Description of the technical data of the pump (set)
General arrangement drawing / outline drawing	Description of mating dimensions and installation dimensions for the pump (set), weights
Drawing of auxiliary connections	Description of auxiliary connections
Hydraulic characteristic curve	Characteristic curves showing head, NPSH required, efficiency and power input
General assembly drawing ¹⁾	Sectional drawing of the pump
Sub-supplier product literature ¹⁾	Operating manuals and other product literature describing accessories and integrated machinery components
Spare parts lists ¹⁾	Description of spare parts
Piping layout ¹⁾	Description of auxiliary piping
List of components ¹⁾	Description of all pump components
Assembly drawing ¹⁾	Sectional drawing of the installed shaft seal

For accessories and/or integrated machinery components, observe the relevant manufacturer's product literature.

1.5 Symbols

Table 2: Symbols used in this manual

Symbol	Description
✓	Conditions which need to be fulfilled before proceeding with the step-by-step instructions
Þ	Safety instructions
⇒	Result of an action
⇒	Cross-references

¹ If included in agreed scope of supply

1161.87/01-EN

Symbol	Description
1.	Step-by-step instructions
2.	
	Note Recommendations and important information on how to handle the product

1.6 Key to safety symbols/markings

 Table 3: Definition of safety symbols/markings

Symbol	Description
<u></u> ∆ DANGER	DANGER This signal word indicates a high-risk hazard which, if not avoided, will result in death or serious injury.
<u></u> MARNING	WARNING This signal word indicates a medium-risk hazard which, if not avoided, could result in death or serious injury.
CAUTION	CAUTION This signal word indicates a hazard which, if not avoided, could result in damage to the machine and its functions.
(£x)	Explosion protection This symbol identifies information about avoiding explosions in potentially explosive atmospheres in accordance with the UK regulation. Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres Regulations 2016.
<u></u>	General hazard In conjunction with one of the signal words this symbol indicates a hazard which will or could result in death or serious injury.
4	Electrical hazard In conjunction with one of the signal words this symbol indicates a hazard involving electrical voltage and identifies information about protection against electrical voltage.
	Machine damage In conjunction with the signal word CAUTION this symbol indicates a hazard for the machine and its functions.

2 Safety

All the information contained in this section refers to hazardous situations.

In addition to the present general safety information the action-related safety information given in the other sections must be observed.

2.1 General

- This operating manual contains general installation, operating and maintenance instructions that must be observed to ensure safe operation of the system and prevent personal injury and damage to property.
- Comply with all the safety instructions given in the individual sections of this
 operating manual.
- The operating manual must be read and understood by the responsible specialist personnel/operators prior to installation and commissioning.
- The contents of this operating manual must be available to the specialist personnel at the site at all times.
- Information and markings attached directly to the product must always be complied with and kept in a perfectly legible condition at all times. This applies to, for example:
 - Arrow indicating the direction of rotation
 - Markings for connections
 - Name plate
- The operator is responsible for ensuring compliance with all local regulations not taken into account.

2.2 Intended use

- The pump (set) must only be operated in the fields of application and within the use limits specified in the other applicable documents.
- Only operate pumps/pump sets which are in perfect technical condition.
- Do not operate the pump (set) in partially assembled condition.
- Only use the pump (set) to handle the fluids described in the data sheet or product literature of the pump variant.
- Never operate the pump (set) without the fluid to be handled.
- Observe the minimum flow rate and maximum flow rate indicated in the data sheet or product literature (to prevent overheating, mechanical seal damage, cavitation damage, bearing damage, etc).
- Always operate the pump (set) in the direction of rotation it is intended for.
- Do not throttle the flow rate on the suction side of the pump (to prevent cavitation damage).
- Consult the manufacturer about any use or mode of operation not described in the data sheet or product literature.

2.3 Personnel qualification and training

All personnel involved must be fully qualified to transport, install, operate, maintain and inspect the machinery this manual refers to.

The responsibilities, competence and supervision of all personnel involved in transport, installation, operation, maintenance and inspection must be clearly defined by the operator.

Deficits in knowledge must be rectified by means of training and instruction provided by sufficiently trained specialist personnel. If required, the operator can commission the manufacturer/supplier to train the personnel.

Training on the pump (set) must always be supervised by technical specialist personnel.

2.4 Consequences and risks caused by non-compliance with this manual

- Non-compliance with these operating instructions will lead to forfeiture of warranty cover and of any and all rights to claims for damages.
- Non-compliance can, for example, have the following consequences:
 - Hazards to persons due to electrical, thermal, mechanical and chemical effects and explosions
 - Failure of important product functions
 - Failure of prescribed maintenance and servicing practices
 - Hazard to the environment due to leakage of hazardous substances

2.5 Safety awareness

In addition to the safety information contained in this operating manual and the intended use, the following safety regulations shall be complied with:

- Accident prevention, health regulations and safety regulations
- Explosion protection regulations
- Safety regulations for handling hazardous substances
- Applicable standards, directives and laws

2.6 Safety information for the operator/user

- Fit protective equipment (e.g. contact guards) supplied by the operator for hot, cold or moving parts, and check that the equipment functions properly.
- Do not remove any protective equipment (e.g. contact guards) during operation.
- Provide the personnel with protective equipment and make sure it is used.
- Contain leakages (e.g. at the shaft seal) of hazardous fluids handled (e.g. explosive, toxic, hot) so as to avoid any danger to persons and the environment. Adhere to all relevant laws.
- Eliminate all electrical hazards. (In this respect refer to the applicable national safety regulations and/or regulations issued by the local energy supply companies.)
- If stopping the pump does not increase potential risk, fit an emergency-stop control device in the immediate vicinity of the pump (set) during pump set installation.

2.7 Safety information for maintenance, inspection and installation

- Modifications or alterations of the pump (set) are only permitted with the manufacturer's prior consent.
- Use only original spare parts or parts/components authorised by the manufacturer. The use of other parts/components can invalidate any liability of the manufacturer for resulting damage.
- The operator ensures that maintenance, inspection and installation are performed by authorised, qualified specialist personnel who are thoroughly familiar with the manual.
- Only carry out work on the pump (set) during standstill of the pump.
- Only perform work on the pump set when it has been disconnected from the power supply (de-energised).
- The pump (set) must have cooled down to ambient temperature.
- Pump pressure must have been released and the pump must have been drained.

Etaline Z 9 of 64

- When taking the pump set out of service always adhere to the procedure described in the manual. (⇒ Section 6.1.6, Page 33) (⇒ Section 6.3, Page 35)
- Decontaminate pumps which handle fluids posing a health hazard. (⇒ Section 7.3, Page 41)
- As soon as the work has been completed, re-install and re-activate any safetyrelevant devices and protective devices. Before returning the product to service, observe all instructions on commissioning. (

 ⇒ Section 6.1, Page 30)

2.8 Unauthorised modes of operation

Never operate the pump (set) outside the limits stated in the data sheet and in this operating manual.

The warranty relating to the operating reliability and safety of the pump (set) supplied is only valid if the equipment is used in accordance with its intended use. (⇒ Section 2.2, Page 8)

2.9 Explosion protection

Always observe the information on explosion protection given in this section when operating the product in potentially explosive atmospheres.

Pumps/Pump sets must not be used in potentially explosive atmospheres unless marked as explosion-proof and identified as such in the data sheet.

Special conditions apply to the operation of explosion-proof pump sets in accordance with the UK's Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres Regulations 2016.

Especially adhere to the sections in this manual marked with the Ex symbol and the following sections, (⇒ Section 2.9.1, Page 10) to (⇒ Section 2.9.4, Page 11) The explosion-proof status of the pump is only assured if the pump is used in accordance with its intended use.

Never operate the product outside the limits stated in the data sheet and on the name plate.

Prevent impermissible modes of operation at all times.

2.9.1 Marking

Pump The marking on the pump refers to the pump part only.

Example of such marking:

II 2G Ex h IIC T5-T1 Gb

Refer to the Temperature limits table for the maximum temperatures permitted for the individual pump variants. (

⇒ Section 2.9.2, Page 10)

The pump complies with the requirements of type of protection constructional safety "c" to ISO 80079-37.

Shaft coupling

An EC manufacturer's declaration is required for the shaft coupling; the shaft coupling must be marked accordingly.

Motor The motor has its own marking. The marking is maintained on the condition that the temperatures the pump causes to develop at the motor flange and motor shaft are permitted by the motor manufacturer.

The motors fitted by KSB on pumps certified for potentially explosive atmospheres meet this condition.

Misuse, malfunctions or non-compliance with the instructions may result in substantially higher temperatures.

2.9.2 Temperature limits

In normal pump operation, the highest temperatures are to be expected on the surface of the pump casing and at the shaft seal.

The surface temperature at the pump casing corresponds to the temperature of the fluid handled. If the pump is heated in addition, the operator of the system is responsible for observing the specified temperature class and fluid temperature (operating temperature).

The table (\Rightarrow Table 4) lists the temperature classes and the resulting maximum permissible fluid temperatures. The values shown correspond to the theoretical limits. They include only a general safety margin for the mechanical seal. For single mechanical seals, the safety margin required for specific operating conditions and mechanical seal designs may be substantially higher. If operating conditions differ from those stated on the data sheet, or if different mechanical seals are used, the actual safety margin required needs to be determined individually. If in doubt please contact the manufacturer.

The temperature class specifies the maximum permissible temperature at the surface of the pump set during operation. For the permissible operating temperature of the pump in question refer to the data sheet.

Table 4: Temperature limits

Temperature class to ISO 80079-36	Maximum permissible fluid temperature ²⁾
T1	Temperature limit of the pump
T2	280 °C
T3	185 °C
T4	120 °C
T5	85 °C
Т6	Only after consultation with the manufacturer

If the pump is to be operated at a higher temperature, the data sheet is missing or if the pump is part of a pool of pumps, contact KSB for the maximum permissible operating temperature.

Motor supplied by the operator

If a pump is supplied without motor (as part of a pool of pumps), the motor specified in the pump data sheet must meet the following conditions:

- The permissible temperature limits at the motor flange and motor shaft must be higher than the temperatures generated by the pump.
- Contact the manufacturer for the actual pump temperatures.

2.9.3 Monitoring equipment

The pump (set) must only be operated within the limits specified in the data sheet and on the name plate.

If the system operator cannot warrant compliance with these operating limits, appropriate monitoring devices must be used.

Check whether monitoring equipment is required to ensure that the pump set functions properly.

Contact KSB for further information about monitoring equipment.

2.9.4 Operating limits

The minimum flow rates indicated in (⇒ Section 6.2.3.1, Page 35) refer to water and water-like fluids handled. Longer operating periods with these fluids and at the flow rates indicated will not cause an additional increase in the temperatures at the pump surface. However, if the physical properties of the fluids handled are different from water, it is essential to check whether an additional heat build-up may occur and if the minimum flow rate must therefore be increased. The calculation formula in (⇒ Section 6.2.3.1, Page 35) can be used to check whether an additional heat build-up may lead to a dangerous temperature increase at the pump surface.

Etaline Z 11 of 64

² Subject to further limitations for mechanical seal temperature rise

3 Transport/Storage/Disposal

3.1 Checking the condition upon delivery

- 1. On transfer of goods, check each packaging unit for damage.
- 2. In the event of in-transit damage, assess the exact damage, document it and notify KSB or the supplying dealer and the insurer about the damage in writing immediately.

3.2 Transport

DANGER

The pump (set) could slip out of the suspension arrangement Danger to life from falling parts!

- ▶ Always transport the pump (set) in the specified position.
- ▶ Never attach the suspension arrangement to the free shaft end or the motor evebolt.
- ▷ Observe the information about weights, centre of gravity and fastening points.
- Observe the applicable local accident prevention regulations.
- ▶ Use suitable, permitted lifting accessories, e.g. self-tightening lifting tongs.

To transport the pump/pump set suspend it from the lifting tackle as shown.

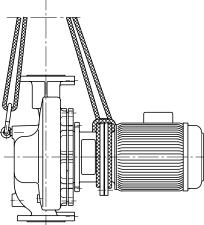


Fig. 1: Transporting the pump set

CAUTION

Incorrect transport of the pump

Damage to the shaft seal!

▶ For transport, lock the pump shaft with a suitable transport lock to prevent any movement of the shaft.

When transporting the pump without motor, shaft 210 must be locked.

- 1. Remove the screws on cover plates 68-3, press the cover plates slightly together and remove from drive lantern 341.
- 2. Insert lock washer 931.95 into the shaft groove.
- 3. Tighten hexagon head bolt 901.50.

To transport the pump/pump set suspend it from the lifting tackle as shown.

Fig. 2: Transporting the pump

3.3 Storage/preservation

CAUTION

Damage during storage due to humidity, dirt or vermin

Corrosion/contamination of pump (set)!

▶ For outdoor storage cover the pump (set) and accessories with waterproof material and protect against condensation.

CAUTION

Wet, contaminated or damaged openings and connections

Leakage or damage to the pump!

▶ Clean and cover pump openings and connections as required prior to putting the pump into storage.

If commissioning is to take place some time after delivery, we recommend that the following measures be taken for pump (set) storage.

- Store the pump (set) in a dry, protected room where the atmospheric humidity is as constant as possible.
- Rotate the shaft by hand once a month, e.g. via the motor fan.

If properly stored indoors, the pump set is protected for a maximum of 12 months. New pumps/pump sets are supplied by our factory duly prepared for storage.

For storing a pump (set) which has already been operated, the shutdown measures must be adhered to. (□ Section 6.3.1, Page 35)

3.4 Return to supplier

- 1. Drain the pump as per operating instructions. (⇒ Section 7.3, Page 41)
- 2. Flush and clean the pump, particularly if it has been used for handling noxious, explosive, hot or other hazardous fluids.
- 3. If the pump has handled fluids whose residues could lead to corrosion damage in the presence of atmospheric humidity or could ignite upon contact with oxygen, the pump must also be neutralised, and anhydrous inert gas must be blown through the pump to ensure drying.
- 4. Always complete and enclose a certificate of decontamination when returning the pump.
 - Indicate any safety measures and decontamination measures taken. (⇒ Section 11, Page 60)

NOTE

If required, a blank certificate of decontamination can be downloaded from the following web site: www.ksb.com/certificate_of_decontamination

Etaline Z 13 of 64

3.5 Disposal

Fluids handled, consumables and supplies which are hot and/or pose a health hazard

Hazard to persons and the environment!

- ▷ Collect and properly dispose of flushing fluid and any fluid residues.
- Wear safety clothing and a protective mask if required.
- ▶ Observe all legal regulations on the disposal of fluids posing a health hazard.
- Dismantle the pump (set).
 Collect greases and other lubricants during dismantling.
- 2. Separate and sort the pump materials, e.g. by:
 - Metals
 - Plastics
 - Electronic waste
 - Greases and other lubricants
- 3. Dispose of materials in accordance with local regulations or in another controlled manner.

4 Description of the Pump (Set)

4.1 General

- Non-self-priming in-line twin pump
- Handling clean or aggressive fluids not chemically and mechanically aggressive to the pump materials.

The pump set consists of two centrifugal pumps with separate hydraulic systems and drives. The pumps run in the same direction of rotation.

The changeover flap fitted in the discharge nozzle serves to shut off the stand-by pump.

4.2 Product information

4.2.1 Product information as per Regulation No. 1907/2006 (REACH)

For information as per chemicals Regulation (EC) No. 1907/2006 (REACH), see https://www.ksb.com/ksb-en/About-KSB/Corporate-responsibility/reach/.

4.2.2 Product information as per Ecodesign for Energy-Related Products Regulations 2010

- Minimum efficiency index: see name plate, key to name plate
- The benchmark for the most efficient water pumps is MEI ≥ 0.70.
- Year of construction: see name plate, key to name plate
- Manufacturer's name or trade mark, commercial registration number and place of manufacture: see data sheet or order documentation
- Product's type and size identificator: see name plate, key to name plate
- Hydraulic pump efficiency (%) with trimmed impeller: see data sheet
- Pump performance curves, including efficiency characteristics: see documented characteristic curve
- The efficiency of a pump with a trimmed impeller is usually lower than that of a pump with full impeller diameter. Trimming of the impeller will adapt the pump to a fixed duty point, leading to reduced energy consumption. The minimum efficiency index (MEI) is based on the full impeller diameter.
- Operation of this water pump with variable duty points may be more efficient and economic when controlled, for example, by the use of a variable speed drive that matches the pump duty to the system.
- Information on dismantling, recycling and disposal after decommissioning:
 (⇒ Section 3.5, Page 14)
- Information on benchmark efficiency or benchmark efficiency graph for MEI = 0.70 (0.40) for the pump based on the model shown in the Figure are available at: http://www.europump.org/efficiencycharts

4.3 Designation

Table 5: 1st designation example

																						P	ositi	ion																			
•	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
E	Т	L	-	0	3	2	- 1	0	3	2	-	1	6	0	-	G	G	S	Α	٧	0	1	D	2	1	1	0	0	2	е	х	В	K	S	В	ı	Е	3	Р	D	2	Е	М
	See name plate and data sheet																Se	e d	ata	she	et																						

Table 6: Designation key

Position	Code	Description
1-4	Pump type	
	ETL	Etaline
	ETLZ	Etaline Z (Refer to Etaline to select back pull-out unit)

Etaline Z 15 of 64

Position	Code	Description								
5-16	Size [mm], e.g.	-								
	032	Nominal suction nozzle diamete	er							
	032	Nominal discharge nozzle diam	eter							
	160	Nominal impeller diameter								
17	Pump casing mate	erial								
	G	Cast iron	EN-GJL-250 / A	A48CL35						
18	Impeller material									
	В	Bronze	CC480K-GS / E	330 C90700						
	С	Stainless steel	1.4408 / A743	CF8M						
	G	Cast iron	EN-GJL-250 / /	A48CL35						
19	Design									
	H Approved for drinking water to ACS									
	K	Approved for drinking water to	KSB standard							
	S	Standard								
	U	Approved for drinking water to								
	W Approved for drinking water to WRAS									
	X Non-standard (BT3D, BT3)									
20	Casing cover conn									
	Α	Conical seal chamber								
21	Shaft seal type									
	V	Single mechanical seal with ven	ted chamber (A	-type cover)						
22-23	Seal code, single r	1	T .							
	01	Q1Q1VGG	1 (ZN1181)	≥ -20 - ≤ +110 [°C]						
	06	U3BEGG (shaft units 25, 35)	RMG13G606	≥ -30 - ≤ +140 [°C]						
	07	Q1Q1EGG	1A (ZN1181)	≥ -30 - ≤ +140 [°C]						
	09	U3U3VGG		MG13G60 ≥ -20 - ≤ +110 [°C]						
	10	Q1Q1X4GG	1 (ZN1181)	≥ -20 - ≤ +110 [°C]						
	11	BQ1EGG-WA (WA = drinking water)	1 (ZN1181)	≥ -30 - ≤ +110 [°C]						
	22	AQ1EGG (shaft unit 55)	M32N69	≥ -30 - ≤ +140 [°C]						
	66	Q7Q7EGG	MG13G6	≥ -30 - ≤ +120 [°C]						
24	Scope of supply	4,4,200	IVIG 15G0	2 30 31120[0]						
	A	Pump only (Fig. 0)								
	D		Pump, motor							
	E	Back pull-out unit								
25	Shaft unit									
	2	Shaft unit 25	Shaft unit 25							
	3	Shaft unit 35								
	5	Shaft unit 55								
26-29	Motor rating P _N [k	(W]								
	0002	0,25								
	0550	55,00								
30	Number of motor	poles								
31-32	Explosion protect	ion								
	ex	With explosion-proof motor								
		Without explosion-proof motor	•							
33	Product generation	on								
	В	Etaline / Etaline Z								
34-36	Motor manufactu	rer								

Position	Code	Description							
34-36	KSB	KSB / KSB's choice							
	SIE	Siemens							
	LOH	Loher							
	HAL	Halter							
37-39	Efficiency class								
40-43	PumpDrive								
	PD2	PumpDrive 2							
	PD2E	PumpDrive 2 Eco							
	IFS	MyFlow Drive							
44	PumpMeter								
	M	PumpMeter							

4.4 Name plate

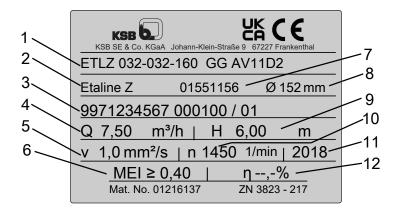


Fig. 3: Name plate (example)

1	Type series code, size and version	2	Type series
3	KSB order No., order item No. and consecutive No.	4	Flow rate
5	Kinematic viscosity of the fluid handled	6	Minimum efficiency index
7	Material number (if applicable)	8	Impeller diameter
9	Head	10	Speed
11	Year of construction	12	Efficiency (see data sheet)

4.5 Design details

Design

- Volute casing pump
- Close-coupled design / in-line design
- Single-stage
- Horizontal installation / vertical installation
- Pump and motor on a common shaft
- Rigid connection between pump and motor

Etaline Z 17 of 64

Pump casing

- Radially split volute casing
- Replaceable casing wear rings
- In-line design

Impeller type

Closed radial impeller with multiply curved vanes

Shaft seal

- Single mechanical seals and double mechanical seals to EN 12756
- Shaft equipped with replaceable shaft protecting sleeve in the shaft seal area

Bearings

Radial ball bearings in the motor housing

Drive

Efficiency class IE3 to IEC 60034-30

Standard design:

- KSB surface-cooled IEC three-phase current squirrel-cage motor
- Rated voltage (50 Hz) 220-240 V / 380-420 V ≤ 2.20 kW
- Rated voltage (50 Hz) 380-420 V / 660 725 V ≥ 3.00 kW
- Rated voltage (60 Hz) 440-480 V ≤ 2.60 kW
- Rated voltage (60 Hz) 440-480 V ≥ 3.60 kW
- Type of construction IM V1 ≤ 4.00 kW
- Type of construction IM V15 ≥ 5.50 kW
- Enclosure IP55
- Duty type: continuous duty \$1
- Thermal class F with temperature sensor, 3 PTC thermistors

Explosion-proof design:

- KSB surface-cooled IEC three-phase current squirrel-cage motor
- Rated voltage (50 Hz) 220 240 V / 380 420 V ≤ 1.85 kW
- Rated voltage (50 Hz) 380 420 V / 660 725 V ≥ 2.50 kW
- Type of construction IM V1 ≤ 3.30 kW
- Type of construction IM V15 ≥ 4.60 kW
- Enclosure IP55 or IP54
- Duty type: continuous duty \$1
- Type of protection EEx eb II
- Temperature class T3

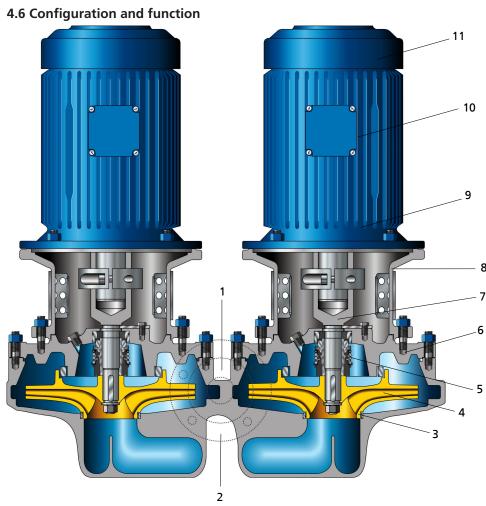


Fig. 4: Sectional drawing

1	Discharge nozzle	2	Suction nozzle
3	Clearance gap	4	Impeller
5	Shaft seal	6	Casing cover
7	Shaft	8	Drive lantern
9	Rolling element bearing	10	Motor housing
11	Rolling element bearing		

Design The pump is designed with a radial fluid inlet (suction nozzle) and a radial outlet (discharge nozzle) arranged on the same axis. The hydraulic system is rigidly connected to the motor by a shaft coupling.

Function The fluid enters the pump via the suction nozzle (2) and is accelerated outward by the rotating impeller (4). In the flow passage of the pump casing the kinetic energy of the fluid is converted into pressure energy. The fluid is pumped to the discharge nozzle (1), where it leaves the pump. The clearance gap (3) prevents any fluid from flowing back from the casing to the suction nozzle. At the rear side of the impeller, the shaft (7) enters the casing via the casing cover (6). The shaft passage through the cover is sealed to the atmosphere with a dynamic shaft seal (5). The shaft runs in rolling element bearings (9 and 11), which are supported by a motor housing (10) linked with the pump casing and/or casing cover via the drive lantern (8).

Sealing The pump is sealed by a standardised mechanical seal.

Etaline Z 19 of 64

4.7 Noise characteristics

Table 7: Surface sound pressure level L_{pA}^{3) 4)}

Rated power input P _N (kW)	Pump set
	1450 rpm ⁻¹
	[dB]
0,25	53
0,37	54
0,55	55
0,75	57
1,1	60
1,5	60
2,2	64
3	64
4	62
5,5	68
7,5	68
11	69
15	69
18,5	70
22	72
30	71
37	71
45	73
55	74

4.8 Scope of supply

Depending on the model, the following items are included in the scope of supply:

1. Pump

Drive

Surface-cooled IEC three-phase current squirrel-cage motor

Accessories

- Pump foot for vertical installation (vertical position of shaft axis)
- Switchgears for single and twin pumps
- Blind flange for ensuring pump availability during servicing

4.9 Dimensions and weights

For dimensions and weights refer to the general arrangement drawing/outline drawing of the pump/pump set.

Surface sound pressure level as per and; valid for a pump operating range of Q/QBEP = 0.8 - 1.1 and non-cavitating operation. If noise levels are to be guaranteed: Add +3 dB for measuring and constructional tolerance.

Increase for 60 Hz operation: 3500 rpm +3 dB, 1750 rpm +1 dB

5 Installation at Site

5.1 Checks to be carried out prior to installation

Place of installation

WARNING

Installation on a mounting surface which is unsecured and cannot support the load Personal injury and damage to property!

- Use a concrete of compressive strength class C12/15 which meets the requirements of exposure class XS1 to BS 206.
- ▶ The mounting surface must be set, even, and level.
- Observe the weights indicated.
- 1. Check the structural requirements.
 All structural work required must have been prepared in accordance with the dimensions stated in the outline drawing/general arrangement drawing.

5.2 Installing the pump set: twin pumps

⚠ DANGER

Static charging due to insufficient potential equalisation

Explosion hazard!

Make sure that the connection between pump and baseplate is electrically conductive.

CAUTION

Ingress of leakage into the motor

Damage to the pump!

▶ Never install the pump set with the "motor below".

CAUTION

Different direction of rotation of twin pumps

Damage to the pump!

- ▶ Never arrange the pump set in "flow direction from top to bottom".
- Pump sizes DN 32 to 80 may be flanged directly into the piping, with the nozzle axis in horizontal (vertical motor shaft) or vertical (horizontal motor shaft) position.
- Pump sizes DN 100 to DN 200 may be flanged directly into the piping, with the nozzle axis in horizontal position (vertical motor shaft). Take suitable steps to support the pump set.

Fastening

NOTE

Motors from size 180 on pump sets with horizontal motor axis need to be supported without transmitting any stresses and strains.

The foot fixing holes on the motor housing can be used for this purpose.

Etaline Z 21 of 64

Table 8: Horizontal installation

Examples	Special features
	Direction of flow from bottom to top
	Motors of size 180 (18.5 kW) and above on pump sets with horizontal motor axis need to be supported adequately. The foot fastening holes on the motor housing can be used for this purpose.
Direction of flow from bottom to top	
	1 = screw plug 6D.1/.2 and 2 = valve 5B.1/.2 If the piping is laid horizontally, the upper pump must be vented through the upper screw plug 6 B.1/.2 and vent valve 5B.1/.2. This will ensure trouble-free operation.
Horizontal piping	
Installation with blind flange	1 = Blind flange (accessories) If one of the pumps needs to be serviced, the pump chamber can be shut off by a blind flange so that the system remains operational.

Table 9: Vertical installation

Examples	Special features
	Sizes 032-032-160 to 080-080-250 are fastened without feet.
Vertical installation without feet	
	Sizes 032-032-160 to 200-200-315 are fastened with three angle feet (St37, accessories depend on the pump size).
Vertical	
installation, pump mounted with three feet	

Provide a vent valve to prevent dry running of the mechanical seal. For vertical installation with the motor on top, use connection 5B for venting. Vertical installation - Information about vent valve The mechanical seal chamber can be vented with the vent valve 5B. Vent, mechanical seal chamber

- 1. Position the pump set on the foundation or in the piping and fasten it.
- 2. Place a spirit level on the discharge nozzle to align the pump set.
- 3. Change the position of the motor pipe plugs for the condensation drain holes (if any) depending on the installation position.

5.3 Piping

5.3.1 Connecting the piping

DANGER

Impermissible loads acting on the pump nozzles

Danger to life from leakage of hot, toxic, corrosive or flammable fluids!

- ▶ Do not use the pump as an anchorage point for the piping.
- Anchor the pipes in close proximity to the pump and connect them properly without transmitting any stresses or strains.
- ▶ Take appropriate measures to compensate for thermal expansion of the piping.

CAUTION

Incorrect earthing during welding work at the piping

Destruction of rolling element bearings (pitting effect)!

- ▶ Never earth the electric welding equipment on the pump or baseplate.
- Prevent current flowing through the rolling element bearings.

1161.87/01-

NOTE

Installing check and shut-off elements in the system is recommended, depending on the type of plant and pump. However, such elements must not obstruct proper drainage or hinder disassembly of the pump.

- ✓ Suction lift lines have been laid with a rising slope, suction head lines with a downward slope towards the pump.
- ✓ A flow stabilisation section having a length equivalent to at least twice the diameter of the suction flange has been provided upstream of the suction flange.
- ✓ The nominal diameters of the pipelines are equal to or greater than the nominal diameters of the pump nozzles.
- ✓ Adapters to larger nominal diameters are designed with a diffuser angle of approx. 8° to avoid excessive pressure losses.
- ✓ The pipelines have been anchored in close proximity to the pump and connected without transmitting any stresses or strains.
- 1. Thoroughly clean, flush and blow through all vessels, pipelines and connections (especially of new installations).
- 2. Before installing the pump in the piping, remove the flange covers on the suction and discharge nozzles of the pump.

CAUTION

Welding beads, scale and other impurities in the piping

Damage to the pump!

- ▶ Remove any impurities from the piping.
- ▶ If necessary, install a filter.
- ▷ Observe the information in (⇒ Section 7.2.2.2, Page 40) .
- 3. Check that the inside of the pump is free from any foreign objects. Remove any foreign objects.
- 4. If required, install a filter in the piping (see drawing: Filter in the piping).

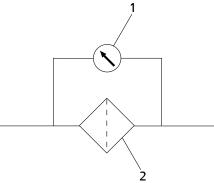


Fig. 5: Filter in the piping

1	Differential pressure gauge	2	Filter
---	-----------------------------	---	--------

NOTE

Use a filter with laid-in wire mesh (mesh width 0.5 mm, wire diameter 0.25 mm) of corrosion-resistant material.

Use a filter with a filter area three times the cross-section of the piping. Conical filters have proved suitable.

5. Connect the pump nozzles to the piping.

CAUTION

Aggressive flushing liquid and pickling agent

Damage to the pump!

▶ Match the cleaning operation mode and duration of flushing and pickling to the casing materials and seal materials used.

5.3.2 Permissible forces and moments at the pump nozzles

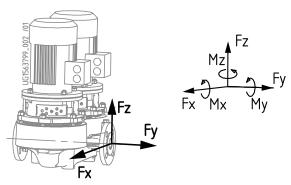


Fig. 6: Forces and moments at the pump nozzles

The data on forces and moments apply to static piping loads only. The values are only applicable if the pump is installed on a baseplate and bolted to a rigid and level foundation.

Table 10: Forces and moments at the pump nozzles

Size	DN	F _x	F _y	F _z	∑F	M _x	M _y	M _z
		[N]	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
032-032-160	32	320	370	300	574	390	265	300
032-032-200	32	320	370	300	574	390	265	300
040-040-160	40	400	450	350	696	450	320	370
040-040-250	40	400	450	350	696	450	320	370
050-050-160	50	530	580	470	916	500	350	400
050-050-250	50	530	580	470	916	500	350	400
065-065-160	65	650	740	600	1153	530	390	420
065-065-250	65	650	740	600	1153	530	390	420
080-080-160	80	790	880	720	1385	560	400	460
080-080-200	80	790	880	720	1385	560	400	460
080-080-250	80	790	880	720	1385	560	400	460
100-100-125	100	1050	1180	950	1843	620	440	510
100-100-160	100	1050	1180	950	1843	620	440	510
100-100-200	100	1050	1180	950	1843	620	440	510
100-100-250	100	1050	1180	950	1843	620	440	510
125-125-160	125	1250	1400	1120	2186	740	530	670
125-125-200	125	1250	1400	1120	2186	740	530	670
125-125-250	125	1250	1400	1120	2186	740	530	670
150-150-200	150	1600	1750	1400	2754	880	610	720
150-150-250	150	1600	1750	1400	2754	880	610	720
200-200-250	200	2100	2350	1900	3680	1150	800	930
200-200-315	200	2100	2350	1900	3680	1150	800	930

1161.87/01-EN

Etaline Z 25 of 64

5.3.3 Vacuum balance line

NOTE

Where fluid has to be pumped out of a vessel under vacuum, installing a vacuum balance line is recommended.

The following rules apply to vacuum balance lines:

- Minimum nominal line diameter 25 mm.
- The line extends above the highest permissible fluid level in the vessel.

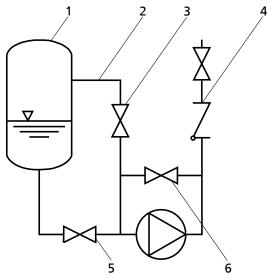


Fig. 7: Vacuum balance system

1	Vessel under vacuum	2	Vacuum balance line
3	Shut-off element	4	Swing check valve
5	Main shut-off element	6	Vacuum-tight shut-off element

NOTE

An additional line fitted with a shut-off valve (from the pump discharge nozzle to the balance line) facilitates venting of the pump before start-up.

5.3.4 Auxiliary connections

⚠ DANGER

Risk of potentially explosive atmosphere by incompatible fluids mixing in the auxiliary piping

▶ Make sure that the barrier fluid or quench liquid are compatible with the fluid handled.

MARNING

Failure to use or incorrect use of auxiliary connections (e.g. barrier fluid, flushing liquid, etc.)

Risk of injury from escaping fluid!

Risk of burns!

Malfunction of the pump!

- ▶ Refer to the general arrangement drawing, the piping layout and pump markings (if any) for the quantity, dimensions and locations of auxiliary connections
- ▶ Use the auxiliary connections provided.

5.4 Enclosure/insulation

DANGER

Explosive atmosphere forming due to insufficient venting

Explosion hazard!

- Make sure the space between the casing cover/discharge cover and the motor flange is sufficiently vented.
- Do not cover the perforations of the contact guards at the drive lantern (e.g. by insulation).

MARNING

The volute casing and casing/discharge cover take on the same temperature as the fluid handled

Risk of burns!

- ▶ Insulate the volute casing.
- ▶ Fit protective equipment.

CAUTION

Heat build-up inside the drive lantern

Damage to the bearing!

▶ Never insulate the casing cover and the drive lantern.

NOTE

Pump casings handling fluids at temperatures below freezing point may be insulated at the site, subject to the manufacturer's prior approval.

5.5 Electrical connection

DANGER

Electrical connection work by unqualified personnel

Danger of death from electric shock!

- ▶ Always have the electrical connections installed by a trained electrician.
- Description Descri

Etaline Z 27 of 64

MARNING

Incorrect connection to the mains

Damage to the power supply network, short circuit!

- ▶ Observe the technical specifications of the local energy supply companies.
- 1. Check the available mains voltage against the data on the motor name plate.
- 2. Select an appropriate starting method.

NOTE

Installing a motor protection device is recommended.

5.5.1 Setting the time relay

CAUTION

Switchover between star and delta on three-phase motors with star-delta starting takes too long.

Damage to the pump (set)!

▶ Keep switch-over intervals between star and delta as short as possible.

Table 11: Time relay settings for star-delta starting:

Motor rating	Y time to be set		
[kW]	[s]		
≤ 30	< 3		
> 30	< 5		

5.5.2 Earthing

Electrostatic charging

Explosion hazard!

Fire hazard!

Damage to the pump set!

▶ Connect the PE conductor to the earthing terminal provided.

5.5.3 Connecting the motor

NOTE

In compliance with IEC 60034-8, three-phase motors are always wired for clockwise rotation (looking at the motor shaft stub).

The pump's direction of rotation is indicated by an arrow on the pump.

- 1. Match the motor's direction of rotation to that of the pump.
- 2. Observe the manufacturer's product literature supplied with the motor.

5.6 Checking the direction of rotation

DANGER

Temperature increase resulting from contact between rotating and stationary components

Damage to the pump set!

▶ Never check the direction of rotation by starting up the unfilled pump.

Hands inside the pump casing

Risk of injuries, damage to the pump!

▶ Always disconnect the pump set from the power supply and secure it against unintentional start-up before inserting your hands or other objects into the pump.

CAUTION

Incorrect direction of rotation with non-reversible mechanical seal

Damage to the mechanical seal and leakage!

Check the direction of rotation by starting the pump set and stopping it again immediately.

CAUTION

Drive and pump running in the wrong direction of rotation

Damage to the pump!

- ▶ Refer to the arrow indicating the direction of rotation on the pump.
- ▶ Check the direction of rotation. If required, check the electrical connection and correct the direction of rotation.

The correct direction of rotation of motor and pump is clockwise (seen from the motor end).

- 1. Start the pump set and stop it again immediately to determine the motor's direction of rotation.
- Check the direction of rotation.The motor's direction of rotation must match the arrow indicating the direction of rotation on the pump.
- 3. If the pump runs in the wrong direction of rotation, check the electrical connection of the motor and the control system, if necessary.

6 Commissioning/Start-up/Shutdown

6.1 Commissioning/Start-up

6.1.1 Prerequisites for commissioning/start-up

Before commissioning/starting up the pump set, make sure that the following conditions are met:

- The pump set has been properly connected to the power supply and is equipped with all protection devices. (⇒ Section 5.5, Page 27)
- The pump has been primed with the fluid to be handled. The pump has been vented. (⇒ Section 6.1.4, Page 30)
- The direction of rotation has been checked. (⇒ Section 5.6, Page 29)
- All auxiliary connections required are connected and operational.
- The lubricants have been checked. (⇒ Section 6.1.2, Page 30)
- After prolonged shutdown of the pump (set), the activities required for returning the equipment to service have been carried out. (⇒ Section 6.4, Page 36)
- The lock washers, if any, have been removed from the shaft groove.

6.1.2 Filling in lubricants

Grease-lubricated bearings have been packed with grease at the factory.

6.1.3 Checking the shaft seal

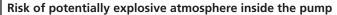
Mechanical seal

The mechanical seal only leaks slightly or invisibly (as vapour) during operation. Mechanical seals are maintenance-free.

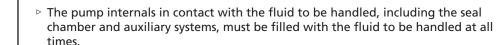
Double mechanical seal

DANGER

Excessive temperature of barrier fluid (pumps with double mechanical seal) Explosion hazard!


Excessive surface temperature

▶ For pumps with double mechanical seal, make sure that the barrier fluid's temperature does not exceed 60 °C.


6.1.4 Priming and venting the pump

DANGER

Explosion hazard!

- Provide sufficient inlet pressure.
- Provide an appropriate monitoring system.

A DANGER

Risk of potentially explosive atmosphere by incompatible fluids mixing in the auxiliary piping

Risk of burns!

Explosion hazard!

Make sure that the barrier fluid or quench liquid are compatible with the fluid handled.

Shaft seal failure caused by insufficient lubrication

Hot or toxic fluid could escape!

Damage to the pump!

Before starting up the pump set, vent the pump and suction line and prime both with the fluid to be handled.

CAUTION

Increased wear due to dry running

Damage to the pump set!

- ▶ Never operate the pump set without liquid fill.
- ▶ Never close the shut-off element in the suction line and/or supply line during pump operation.
- Vent the pump and suction line and prime both with the fluid to be handled. Connection 6D can be used for venting (see drawing of auxiliary connections). For vertical installation with the motor on top use connection 5B (if any) for venting (see drawing of auxiliary connections).
- 2. Fully open the shut-off element in the suction line.
- 3. Fully open all auxiliary feed lines (barrier fluid, flushing liquid, etc.), if any.
- 4. Open the shut-off valve (3), if any, in the vacuum balance line (2) and close the vacuum-tight shut-off valve (6), if any. (□ Section 5.3.3, Page 26)

WARNING

Hot water escaping under pressure when the vent plug is opened

Risk of electric shock!

Risk of scalding!

- ▶ Protect the electric components against escaping fluid.
- ▶ Wear protective clothing (e.g. gloves).

NOTE

For design-inherent reasons some unfilled volume in the hydraulic system cannot be excluded after the pump has been primed for commissioning/start-up. However, once the motor is started up the pumping effect will immediately fill this volume with the fluid handled.

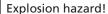
Etaline Z 31 of 64

6.1.5 Start-up

A DANGER

Non-compliance with the permissible pressure and temperature limits if the pump is operated with the suction and/or discharge line closed.

Explosion hazard!


Hot or toxic fluids escaping!

- Never operate the pump with the shut-off elements in the suction line and/or discharge line closed.
- Only start up the pump set with the discharge-side shut-off element slightly or fully open.

A DANGER

Excessive temperatures due to dry running or excessive gas content in the fluid handled

Damage to the pump set!

- ▶ Never operate the pump set without liquid fill.
- Prime the pump as per operating instructions.
- ▶ Always operate the pump within the permissible operating range.

CAUTION

Abnormal noises, vibrations, temperatures or leakage

Damage to the pump!

- Switch off the pump (set) immediately.
- ▶ Eliminate the causes before returning the pump set to service.
- ✓ The system piping has been cleaned.
- ✓ The pump, suction line and inlet tank, if any, have been vented and primed with the fluid to be pumped.
- ✓ The lines for priming and venting have been closed.

CAUTION

Start-up against open discharge line

Motor overload!

- ▶ Make sure the motor has sufficient power reserves.
- Use a soft starter.
- ▶ Use speed control.
- 1. Fully open the shut-off element in the suction head/suction lift line.
- 2. Close or slightly open the shut-off element in the discharge line.
- 3. Start up the motor.
- 4. Immediately after the pump has reached full rotational speed, slowly open the shut-off element in the discharge line and adjust it to comply with the duty point.

6.1.6 Shutdown

CAUTION

Heat build-up inside the pump

Damage to the shaft seal!

 Depending on the type of installation, the pump set requires sufficient afterrun time – with the heat source switched off – until the fluid handled has cooled down.

CAUTION

Backflow of fluid handled is not permitted

Motor or winding damage! Mechanical seal damage!

- ▷ Close the shut-off elements.
- ✓ The shut-off element in the suction line is and remains open.
- 1. Close the shut-off element in the discharge line.
- 2. Switch off the motor and make sure the pump set runs down smoothly to a standstill.

NOTE

If the discharge line is equipped with a non-return or check valve, the shut-off element may remain open provided that the system conditions and system regulations are considered and observed.

For prolonged shutdown periods:

- 1. Close the shut-off element in the suction line.
- 2. Close any auxiliary lines.

 If the fluid to be handled is fed in under vacuum, also supply the shaft seal with barrier fluid during standstill.

CAUTION

Risk of freezing during prolonged pump shutdown periods

Damage to the pump!

Drain the pump and the cooling/heating chambers (if any) or otherwise protect them against freezing.

1 DANGER

Non-compliance with operating limits for pressure, temperature, fluid handled and speed

Hot or toxic fluid could escape!

- ▷ Comply with the operating data specified in the data sheet.
- ▶ Never use the pump for handling fluids it is not designed for.
- ▶ Avoid prolonged operation against a closed shut-off element.
- Never operate the pump at temperatures, pressures or rotational speeds exceeding those specified in the data sheet or on the name plate unless the written consent of the manufacturer has been obtained.

Etaline Z 33 of 64

A DANGER

Formation of a potentially explosive atmosphere inside the pump Explosion hazard!

▶ When draining tanks take suitable measures to prevent dry running of the pump (e.g. fill level monitoring).

6.2.1 Ambient temperature

CAUTION

Operation outside the permissible ambient temperature

Damage to the pump (set)!

Observe the specified limits for permissible ambient temperatures.

Observe the following parameters and values during operation:

Table 12: Permissible ambient temperatures

Permissible ambient temperature	Value	
Maximum	40 °C	
Minimum	See data sheet.	

6.2.2 Frequency of starts

DANGER

Excessive surface temperature of the motor

Explosion hazard!

Damage to the motor!

In case of explosion-proof motors, observe the frequency of starts specified in the manufacturer's product literature.

The frequency of starts is determined by the maximum temperature increase of the motor. The frequency of starts depends on the power reserves of the motor in steady-state operation and on the starting conditions (DOL starting, star-delta starting, moments of inertia, etc). If the start-ups are evenly spaced over the period indicated, the following limits serve as orientation for start-up with the discharge-side shut-off valve slightly open:

Table 13: Frequency of starts

Impeller material	Maximum frequency of starts		
	[Start-ups/hour]		
G (JL1040/ A48CL35B)	15		
B (CC480K-GS/B30 C90700)	6		
C (1.4408/ A743 GR CF8M)			

CAUTION

Re-starting while motor is still running down

Damage to the pump (set)!

▶ Do not re-start the pump set before the pump rotor has come to a standstill.

6.2.3 Fluid handled

6.2.3.1 Flow rate

Table 14: Flow rate

Temperature range (t)	Minimum flow rate	Maximum flow rate
-30 to +70 °C	≈ 15 % of Q _{BEP} ⁵⁾	See hydraulic characteristic
> 70 to +140 °C	≈ 25 % of Q _{BEP} ⁵⁾	curves

The calculation formula below can be used to check if an additional heat build-up could lead to a dangerous temperature increase at the pump surface.

$$T_O = T_f + \Delta \vartheta$$

$$\Delta \vartheta = \frac{\mathsf{g} \times \mathsf{H}}{\mathsf{c}^{\times} \eta} \times (1 - \eta)$$

Table 15: Key

Symbol	Description	Unit
С	Specific heat capacity	J/kg K
g	Acceleration due to gravity	m/s ²
Н	Pump discharge head	m
T _f	Fluid temperature	°C
T _o	Temperature at the casing surface	°C
η	Pump efficiency at duty point	-
$\Delta \vartheta$	Temperature difference	K

6.2.3.2 Density of the fluid handled

The power input of the pump set will change in proportion to the density of the fluid handled.

CAUTION

Impermissibly high density of the fluid handled

Motor overload!

- Description Descri
- ▶ Make sure the motor has sufficient power reserves.

6.2.3.3 Abrasive fluids

When the pump handles fluids containing abrasive substances, increased wear of the hydraulic system and the shaft seal are to be expected. In this case, reduce the commonly recommended inspection intervals.

The fluid handled may contain abrasive particles up to a maximum content of 5 g/dm³ and a maximum particle size of 0.5 mm.

6.3 Shutdown/storage/preservation

6.3.1 Measures to be taken for shutdown

The pump (set) remains installed

- ✓ Sufficient fluid is supplied for the functional check run of the pump.
 - 1. For prolonged shutdown periods, start up the pump (set) regularly between once a month and once every three months for approximately five minutes.

Etaline Z 35 of 64

Best efficiency point

⇒ This will prevent the formation of deposits within the pump and the pump intake area.

The pump (set) is removed from the pipe and stored

- ✓ The pump has been properly drained. (⇒ Section 7.3, Page 41)
- ✓ The safety instructions for dismantling the pump have been observed. (⇒ Section 7.4.1, Page 41)
- ✓ The permissible ambient temperature for storing the pump is observed.
- 1. Spray-coat the inside wall of the pump casing and, in particular, the impeller clearance areas with a preservative.
- 2. Spray the preservative through the suction nozzle and discharge nozzle. It is advisable to then close the pump nozzles (e.g. with plastic caps)
- 3. Oil or grease all exposed machined parts and surfaces of the pump (with silicone-free oil or grease, food-approved, if required) to protect them against corrosion.
 - Observe the additional instructions on preservation. (

 ⇒ Section 3.3, Page 13)

If the pump set is to be stored temporarily, only preserve the wetted components made of low-alloy materials. Commercially available preservatives can be used for this purpose. Observe the manufacturer's instructions for application/removal.

6.4 Returning to service

For returning the equipment to service observe the sections on commissioning/start-up and the operating limits. (⇒ Section 6.1, Page 30) (⇒ Section 6.2, Page 33) In addition, carry out all servicing/maintenance operations before returning the pump (set) to service. (⇒ Section 7, Page 37)

⚠ WARNING

Failure to re-install or re-activate protective devices

Risk of injury from moving parts or escaping fluid!

As soon as the work is completed, properly re-install and re-activate any safety-relevant devices and protective devices.

NOTE

If the equipment has been out of service for more than one year, replace all elastomer seals.

7 Servicing/Maintenance

7.1 Safety regulations

DANGER

Improper cleaning of coated pump surfaces

Explosion hazard by electrostatic discharge!

▶ When cleaning coated pump surfaces in atmospheres of Explosion group IIC, use suitable anti-static equipment.

A DANGER

Sparks produced during servicing work

Explosion hazard!

- ▶ Observe the safety regulations in force at the place of installation!
- ▶ Always perform maintenance work at an explosion-proof pump (set) outside of potentially explosive atmospheres.

⚠ DANGER

Improperly serviced pump set

Explosion hazard!

Damage to the pump set!

- Service the pump set regularly.
- ▶ Prepare a maintenance schedule with special emphasis on lubricants, shaft seal and coupling.

The operator ensures that maintenance, inspection and installation are performed by authorised, qualified specialist personnel who are thoroughly familiar with the manual.

↑ WARNING

Unintentional starting of the pump set

Risk of injury by moving components and shock currents!

- ▶ Ensure that the pump set cannot be started unintentionally.
- ▶ Always make sure the electrical connections are disconnected before carrying out work on the pump set.

WARNING

Fluids handled, consumables and supplies which are hot and/or pose a health hazard

- Observe all relevant laws.
- When draining the fluid take appropriate measures to protect persons and the environment.
- Decontaminate pumps which handle fluids posing a health hazard.

1161.87/01-EN

⚠ WARNING

Insufficient stability

Risk of crushing hands and feet!

During assembly/dismantling, secure the pump (set)/pump parts to prevent tilting or tipping over.

A regular maintenance schedule will help avoid expensive repairs and contribute to trouble-free, reliable operation of the pump, pump set and pump parts with a minimum of servicing/maintenance expenditure and work.

NOTE

All maintenance work, service work and installation work can be carried out by KSB Service or authorised workshops. For contact details refer to the enclosed "Addresses" booklet or visit "www.ksb.com/contact" on the Internet.

Never use force when dismantling and reassembling the pump set.

7.2 Servicing/Inspection

7.2.1 Supervision of operation

DANGER

Risk of potentially explosive atmosphere inside the pump

Explosion hazard!

- ▶ The pump internals in contact with the fluid to be handled, including the seal chamber and auxiliary systems, must be filled with the fluid to be handled at all
- Provide sufficient inlet pressure.
- Provide an appropriate monitoring system.

A DANGER

Incorrectly serviced shaft seal

Explosion hazard!

Hot, toxic fluid escaping!

Damage to the pump set!

Risk of burns!

Fire hazard!

Regularly service the shaft seal.

DANGER

Excessive temperatures as a result of bearings running hot or defective bearing

Explosion hazard!

Fire hazard!

Damage to the pump set!

▶ Regularly check the rolling element bearings for running noises.

CAUTION

Increased wear due to dry running

Damage to the pump set!

- ▶ Never operate the pump set without liquid fill.
- ▶ Never close the shut-off element in the suction line and/or supply line during pump operation.

CAUTION

Impermissibly high temperature of fluid handled

Damage to the pump!

- Prolonged operation against a closed shut-off element is not permitted (heating up of the fluid).
- Observe the temperature limits in the data sheet and in the section on operating limits. (⇒ Section 6.2, Page 33)

While the pump is in operation, observe and check the following:

- The pump must run quietly and free from vibrations at all times.
- Check the shaft seal. (⇒ Section 6.1.3, Page 30)
- Check the static sealing elements for leakage.
- Check the rolling element bearings for running noises.
 Vibrations, noise and an increase in current input occurring during unchanged operating conditions indicate wear.
- Monitor the correct functioning of any auxiliary connections.
- Monitor the stand-by pump.
 To make sure that stand-by pumps are ready for operation, start them up once a week.
- Monitor the bearing temperature.
 The bearing temperature must not exceed 90 °C (measured on the motor housing).

CAUTION

Operation outside the permissible bearing temperature

Damage to the pump!

▶ The bearing temperature of the pump (set) must never exceed 90 °C (measured on the outside of the motor housing).

NOTE

After commissioning, increased temperatures may occur at grease-lubricated rolling element bearings due to the running-in process. The final bearing temperature is only reached after a certain period of operation (up to 48 hours depending on the conditions).

1161.87/01-

Etaline Z 39 of 64

7.2.2 Inspection work

DANGER

Excessive temperatures caused by friction, impact or frictional sparks

Explosion hazard!

Fire hazard!

Damage to the pump set!

▶ Regularly check the cover plates, plastic components and other guards of rotating parts for deformation and sufficient distance from rotating parts.

Electrostatic charging due to insufficient potential equalisation

Explosion hazard!

▶ Make sure that the connection between pump and baseplate is electrically conductive.

7.2.2.1 Checking the clearances

For checking the clearances remove the impeller, if required.

If the clearance is larger than permitted (see the following table), fit new casing wear ring 502.01 and, if applicable, 502.02.

The clearances given refer to the diameter.

Table 16: Clearances between impeller and casing and/or between impeller and casing cover

Impeller material	Permissible clearance							
	New	Maximum						
G (JL1040/ A48CL35B) B (CC480K-GS/B30 C90700)	0.3 mm	0.9 mm						
C (1.4408/ A743 GR CF8M)	0.5 mm	1.5 mm						

7.2.2.2 Cleaning filters

CAUTION

Insufficient inlet pressure due to clogged filter in the suction line Damage to the pump!

- ▶ Monitor contamination of filter with suitable means (e.g. differential pressure gauge).
- Clean filter at appropriate intervals.

7.3 Drainage/cleaning

WARNING

Hazard to persons and the environment!

- ▷ Collect and properly dispose of flushing fluid and any fluid residues.
- Wear safety clothing and a protective mask if required.
- Description Observe all legal regulations on the disposal of fluids posing a health hazard.
- 1. Use connection 6B to drain the fluid handled (see drawing of auxiliary connections).
- 2. Always flush the system if it has been used for handling noxious, explosive, hot or other hazardous fluids. Always flush and clean the pump before transporting it to the workshop.

Provide a certificate of decontamination for the pump. (⇒ Section 11, Page 60)

7.4 Dismantling the pump set

7.4.1 General information/Safety regulations

Risk of injury!

DANGER

Insufficient preparation of work on the pump (set)

- ▶ Properly shut down the pump set. (⇒ Section 6.1.6, Page 33)
- ▷ Close the shut-off elements in the suction line and discharge line.
- ▶ Drain the pump and release the pump pressure. (⇒ Section 7.3, Page 41)
- Shut off any auxiliary feed lines.
- ▶ Allow the pump set to cool down to ambient temperature.

! WARNING

Unqualified personnel performing work on the pump (set)

Risk of injury!

▶ Always have repair work and maintenance work performed by specially trained, qualified personnel.

WARNING

Hot surface

Risk of injury!

▶ Allow the pump set to cool down to ambient temperature.

!\ WARNING

Improper lifting/moving of heavy assemblies or components

Personal injury and damage to property!

▶ Use suitable transport devices, lifting equipment and lifting tackle to move heavy assemblies or components.

Always observe the safety instructions and information. (

⇒ Section 7.1, Page 37) For any work on the motor, observe the instructions of the relevant motor manufacturer.

Etaline Z 41 of 64

For dismantling and reassembly observe the exploded views and the general assembly drawing.

In the event of damage you can always contact our service departments.

NOTE

All maintenance work, service work and installation work can be carried out by KSB Service or authorised workshops. For contact details refer to the enclosed "Addresses" booklet or visit "www.ksb.com/contact" on the Internet.

NOTE

After a prolonged period of operation the individual components may be hard to pull off the shaft. If this is the case, use a brand name penetrating agent and/or - if possible - an appropriate puller.

7.4.2 Preparing the pump set

- 1. De-energise the pump set and secure it against unintentional start-up.
- 2. Reduce pressure in the piping by opening a consumer installation.
- 3. Disconnect and remove all auxiliary pipework.

7.4.3 Dismantling the complete pump set

NOTE

The pump casing can remain installed in the piping for further dismantling.

- ✓ The notes and steps stated in (⇒ Section 7.4.1, Page 41) to (⇒ Section 7.4.2, Page 42) have been observed/carried out.
- 1. Disconnect the discharge nozzle and suction nozzle from the piping.
- 2. Depending on the pump/motor size, remove the supports from the pump set.
- 3. Remove the complete pump set from the piping.

7.4.4 Removing the motor

⚠ WARNING

Motor tipping over

Risk of crushing hands and feet!

- ▷ Suspend or support the motor to prevent it from tipping over.
- ✓ The notes and steps stated in (⇒ Section 7.4.1, Page 41) to (⇒ Section 7.4.3, Page 42) have been observed/carried out.
- 1. Remove the screws on cover plates 68-3, press the cover plates slightly together and remove from drive lantern 341.
- 2. Undo hexagon nuts 920.11.
- 3. Undo hexagon head bolts 901.50.

CAUTION

Back pull-out unit knocking against the pump casing

Damage to the shaft/back pull-out unit!

- ▶ With the motor removed, push lock washers 931.95 into the shaft groove.
- 4. Insert both lock washers 931.95 into the groove in shaft 210.

- 5. Tighten hexagon head bolts 901.50.
- 6. Undo socket head cap screw 914.24.
- 7. Remove the motor.

7.4.5 Removing the back pull-out unit

⚠ WARNING

Back pull-out unit tilting

Risk of squashing hands and feet!

- Suspend or support the back pull-out unit at the pump end.
- ✓ The notes and steps stated in (⇒ Section 7.4.1, Page 41) to (⇒ Section 7.4.4, Page 42) have been observed/carried out.
- If required, suspend or support the back pull-out unit to prevent it from tipping over.
- 2. Undo hexagon nut 920.15 (on variant with bolted discharge cover) or 920.01 (on variant with clamped discharge cover) at the volute casing.
- 3. Pull the back pull-out unit out of the volute casing.
- 4. Remove and dispose of gasket 400.10.
- 5. Place the back pull-out unit on a clean and level surface.

7.4.6 Removing the impeller

- ✓ The notes and steps stated in (⇒ Section 7.4.1, Page 41) to (⇒ Section 7.4.5, Page 43) have been observed/carried out.
- ✓ The back pull-out unit has been placed in a clean and level assembly area.
- Undo impeller nut 920.95 (right-hand thread).
 Take washer 930.95 and disc 550.95 off the impeller hub.
- 2. Remove impeller 230 with an impeller removal tool.
- 3. Place impeller 230 on a clean and level surface.
- 4. Remove key 940.01 from shaft 210.

7.4.7 Removing the mechanical seal

- ✓ The notes and steps stated in (⇒ Section 7.4.1, Page 41) to (⇒ Section 7.4.6, Page 43) have been observed/carried out.
- ✓ The back pull-out unit has been placed in a clean and level assembly area.
- 1. Remove shaft sleeve 523 with the rotating assembly of the mechanical seal (primary ring) from shaft 210.
- 2. Remove the rotating assembly of the mechanical seal (primary ring) from shaft sleeve 523.
- 3. Undo hexagon nuts 920.15 and socket head cap screw 914.22, if any, on drive lantern 341.
- 4. Remove casing cover 161 from drive lantern 341.
- 5. Remove the stationary assembly of the mechanical seal (mating ring) from casing cover 161.
- 6. Remove and dispose of gasket 400.75.

Etaline Z 43 of 64

7.5 Reassembling the pump set

7.5.1 General information/Safety regulations

A DANGER

Wrong selection of motor

Explosion hazard!

- ▶ Use an original motor or a motor of identical design from the same manufacturer.
- ▶ The permissible temperature limits at the motor flange and motor shaft must be higher than the temperatures generated by the pump. (Contact KSB for temperatures).

!\ WARNING

Improper lifting/moving of heavy assemblies or components

Personal injury and damage to property!

▶ Use suitable transport devices, lifting equipment and lifting tackle to move heavy assemblies or components.

CAUTION

Improper reassembly

Damage to the pump!

- ▶ Reassemble the pump (set) in accordance with the general rules of sound engineering practice.
- Use original spare parts only.

Sequence

Always re-assemble the pump in accordance with the corresponding general assembly drawing or exploded view.

Sealing elements Check O-rings for any damage and replace by new O-rings, if required.

Always use new gaskets. Make sure that new gaskets have the same thickness as the old ones.

Always fit gaskets of asbestos-free materials or graphite without using lubricants (e.g. copper grease, graphite paste).

Assembly adhesives

Avoid the use of assembly adhesives, if possible.

Should an assembly adhesive be required after all, use a commercially available contact adhesive (e.g. Pattex) or sealant (e.g. HYLOMAR or Epple 33).

Only apply adhesive at selected points and in thin layers.

Never use quick-setting adhesives (cyanoacrylate adhesives).

Coat the locating surfaces of the individual components with graphite or similar before reassembly.

Tightening torques For reassembly, tighten all screws and bolts as specified in this manual.

7.5.2 Installing the mechanical seal

Installing the mechanical seal

The following rules must be observed when installing the mechanical seal:

- Work cleanly and accurately.
- Only remove the protective wrapping of the contact faces immediately before installation takes place.
- Prevent any damage to the sealing surfaces or O-rings.
- ✓ The notes and steps stated in (

 Section 7.5.1, Page 44) have been observed/
 carried out.
- ✓ The bearing assembly as well as the individual parts are kept in a clean and level assembly area.
- ✓ All dismantled parts have been cleaned and checked for wear.
- ✓ Any damaged or worn parts have been replaced by original spare parts.
- ✓ The sealing surfaces have been cleaned.
- Clean shaft sleeve 523, and touch up any score marks or scratches with a polishing cloth, if necessary.
 If score marks or scratches are still visible, fit new shaft sleeve 523.
- 2. Slide shaft sleeve 523 with new gasket 400.75 onto shaft 210.
- 3. Clean the mating ring location in casing cover 161.

CAUTION

Elastomers in contact with oil/grease

Shaft seal failure!

- ▶ Use water as assembly lubricant.
- ▶ Never use oil or grease as assembly lubricant.
- 4. Carefully insert the mating ring. Make sure to apply pressure evenly.
- 5. On variants with a bolted casing cover undo forcing screws 901.31 without removing them.
- 6. Place casing cover 161 into the locating fit of drive lantern 341.
- 7. Fit and tighten hexagon nuts 920.01 and/or 920.15, if any.

NOTE

To reduce friction forces when assembling the seal, wet the shaft sleeve and the location of the stationary ring with water.

8. Fit the rotating assembly of the mechanical seal (primary ring) on shaft sleeve 523.

Observe the following installation dimension b for mechanical seals with installation length L_{1k} to EN 12756 (design KU):

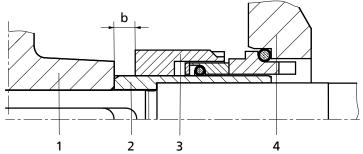


Fig. 8: Installation dimension b of mechanical seal

1	Impeller	2	Shaft sleeve
3	Mechanical seal	4	Casing cover

Etaline Z 45 of 64

Table 17: Installation dimensions of the mechanical seal

Shaft unit ⁶⁾	Installation dimension b
25	7,5 mm
35	10 mm
55	15 mm

7.5.3 Fitting the impeller

- ✓ The notes and steps stated in (⇒ Section 7.5.1, Page 44) to (⇒ Section 7.5.2, Page 45) have been observed/carried out.
- ✓ The pre-assembled unit (motor, shaft, drive lantern, casing cover) as well as the individual parts have been placed in a clean and level assembly area.
- ✓ All dismantled parts have been cleaned and checked for wear.
- ✓ Any damaged or worn parts have been replaced by original spare parts.
- ✓ The sealing surfaces have been cleaned.
- 1. Insert key 940.01 and slide impeller 230 onto shaft 210.
- 2. Fasten impeller nut 920.95, safety device 930.95 and disc 550.95, if any. (⇒ Section 7.6, Page 48)

7.5.4 Installing the back pull-out unit

MARNING

Back pull-out unit tilting

Risk of squashing hands and feet!

- ▶ Suspend or support the back pull-out unit at the pump end.
- ✓ The notes and steps stated in (⇒ Section 7.5.1, Page 44) to (⇒ Section 7.5.3, Page 46) have been observed/carried out.
- ✓ Any damaged or worn parts have been replaced by original spare parts.
- ✓ The sealing surfaces have been cleaned.
- If required, suspend or support the back pull-out unit to prevent it from tipping over.
- 2. Fit new gasket 400.10 into the recess of volute casing 102.
- 3. **On variants with a bolted casing cover** undo forcing screws 901.31 without removing them.
- 4. Push the back pull-out unit into volute casing 102.
- 5. Tighten hexagon nut 920.15 (on variant with a bolted casing cover) or 920.01 (on variant with a clamped casing cover) at volute casing 102.

7.5.5 Mounting the motor

⚠ DANGER

Incorrect shaft connection

Explosion hazard!

▶ Connect the shafts between pump and motor as described in this manual.

⁶ Shaft unit see data sheet.

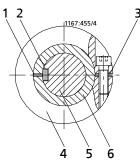


Fig. 9: Fitting the motor shaft stub on the shaft

1	Shaft slot	2	Keyway of the motor shaft end
3	Slot of the locking ring	4	Locking ring
5	Motor shaft	6	Shaft

- ✓ The notes and steps stated in (⇒ Section 7.5.1, Page 44) to have been observed/carried out.
- 1. Fit the motor shaft stub on shaft 210 and make sure that the keyway of the motor shaft end aligns with the slot in shaft 210 and that both are located opposite the slot of locking ring 515 (see illustration: Fitting the motor shaft stub on the shaft).
- 2. Tighten hexagon socket head cap screws 914.24.
- 3. Undo hexagon head bolts 901.50.

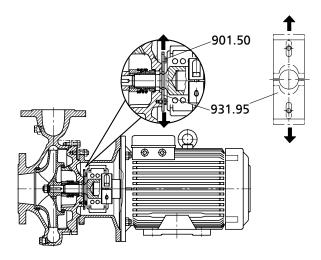


Fig. 10: Removing the lock washers

901.50	Hexagon head bolts	931.95	Lock washer

- 4. Pull both lock washers 931.95 out of the groove in shaft 210.
- 5. Tighten hexagon head bolts 901.50.
- 6. Fit and tighten hexagon nuts 920.11.

Etaline Z 47 of 64

7.6 Tightening torques

Table 18: Tightening points

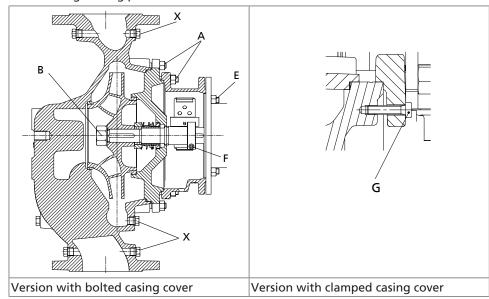


Table 19: Tightening torques for bolted/screwed connections at the pump

Position	Thread	[Nm]			
A	M12	55			
	M16	130			
В	M12 × 1,5	55			
	M24 × 1,5	130			
	M30 × 1,5	170			
E	M8	20			
	M10	38			
	M12	55			
	M16	130			
F	M6	15			
	M8	38			
	M10	85			
	M12	91			
G	M6	5			
X	1/8	25			
	1/4	55			
	3/8	80			
	1/2	130			
	3/4	220			

7.7 Spare parts stock

7.7.1 Ordering spare parts

Always quote the following data when ordering replacement or spare parts:

- Order number
- Order item number
- Consecutive number
- Type series
- Size
- Material variant
- Seal code
- Year of construction

Refer to the name plate for all data.

Also specify the following data:

- Part number and description
- Quantity of spare parts
- Shipping address
- Mode of dispatch (freight, mail, express freight, air freight)

7.7.2 Recommended spare parts stock

Table 20: Quantity of spare parts for recommended spare parts stock for commissioning

Part No.	Description	Numbe	Number of pumps									
		1	2	3	4	5	6	7	8	9	10 and more	
433	Mechanical seal	1	1	1	2	2	2	2	3	3	25 %	
433.01/.02	Mechanical seal ⁷⁾	1	1	1	2	2	2	2	3	3	25 %	
400.10	Gasket	2	4	6	8	8	9	9	12	12	150 %	
400.75	Gasket	2	4	6	8	8	9	9	12	12	150 %	
400.15	Gasket ⁷⁾	2	4	6	8	8	9	9	12	12	150 %	
411.15	Joint ring ⁷⁾	2	4	6	8	8	9	9	12	12	150 %	
412.15	O-ring ⁷⁾	2	4	6	8	8	9	9	12	12	150 %	

Table 21: Quantity of spare parts for recommended spare parts stock for 2 years' operation to DIN 24296

Part No.	Description	Number of pumps									
		1	2	3	4	5	6	7	8	9	10 and more
210	Shaft	1	1	1	1	2	2	2	2	2	20 %
230	Impeller	1	1	1	1	2	2	2	2	2	20 %
433	Mechanical seal	1	1	1	2	2	2	2	3	3	25 %
433.01/.02	Mechanical seal ⁷⁾	1	1	1	2	2	2	2	3	3	25 %
502.01/.02	Casing wear ring ⁸⁾ (set)	1	2	2	2	3	3	3	4	4	50 %
523	Shaft sleeve	1	2	2	2	3	3	3	4	4	50 %
400.10	Gasket	2	4	6	8	8	9	9	12	12	150 %
400.75	Gasket	2	4	6	8	8	9	9	12	12	150 %
400.15	Gasket ⁷⁾	2	4	6	8	8	9	9	12	12	150 %
411.15	Joint ring ⁷⁾	2	4	6	8	8	9	9	12	12	150 %
412.15	O-ring ⁷⁾	2	4	6	8	8	9	9	12	12	150 %

For double mechanical seal

Etaline Z 49 of 64

⁸ If any

7.7.3 Interchangeability of Etaline Z, Etaline and Etabloc pump components

Components featuring the same number in a column are interchangeable.

Etaline ⁹⁾		Description																		
Volute casing Discharge cover						Shaft (with taper lock ring)									Casing wear ring (suction side)	Casing wear ring (suction side) Casing wear ring (discharge side)				
	nit	Part 201	163					21	0					230	433	502.1	502.2	523		
	Shaft unit			Mot	Motor															
	Sh			71	80	90	100/112	132	160	180	200	225	250						Etabloc	
32-32-160/	25	0	1*	1*	2*	3*	-	•	-	-	-	-	•	1*	1*	1*	1*	1*	32-32-160.1/	
32-32-200/	25	0	0*		2*	3*	4*	•	-	-	•	•	•	0*	1*	1*	1*	1*	32-32-200.1/	
40-40-160/	25	0	1*	1*	2*	3*	•	•	-	-	-	-	•	1*	1*	1*	1*	1*	32-32-160/	
40-40-250/	25	0	2*		2*	3*	4*	5*	-	-	-	-	•	0*	1*	1*	2*	1*	32-32-250/	
50-50-160/	25	0	1*	1*	2*	3*	4*	-	-	-	-	-	•	0*	1*	2*	1*	1*	40-40-160/	
50-50-250/	25	0	2*			3*	4*		6*	7*	•	•	•	0*	1*	2*	2*	1*	40-40-250/	
65-65-160/	25	0	1*	1*	2*	3*	4*	•	•	•	•	•	•	0*	1*	3*	1*	1*	50-50-160/	
65-65-250/	25	0	2*			3*	4*	5*	•	•	•	•	•	0*	1*	3*	2*	1*	50-50-250/	
80-80-160/	25	0	0*		2*	3*		5*	•	•	•	•	•	0*	1*	0*	0*	1*	65-65-160/	
80-80-250/	35	0	0*	•			8*	9*	•	•	•	•	•	0*	2*	0*	0*	2*	65-65-250/	
100-100-200/	35	0	4*	•		•	8*	9*	10*	11*	•	•	•	0*	2*	4*	3*	2*	80-80-200/	
100-100-250/	35	0	5*	-		•	8*	9*	10*		12*	13*	•	0*	2*	4*	3*	2*	80-80-250/	
125-125-200/	35	0	4*	•	•	•	8*	9*	10*	11*	-	-	•	0*	2*	5*	3*	2*	100-100-200/	
125-125-250/	35	0	5*	•	•	•	8*	9*	10*		-	-	•	0*	2*	5*	3*	2*	100-100-250/	
150-150-250/	35	0	6*	•	•	•		9*	10*	11*		13*	•	0*	2*	0*	0*	2*	125-125-250/	
200-200-250/	35	0	6*	•	•	•			10*	11*	12*		•	0*	2*	6*	0*	2*	150-150-250/	
200-200-315/	55	0	0*	-	•	•	•	•	•	•	14*	15*	16*	0*	0*	6*	0*	0*	150-150-315/	

Table 22: Key to the symbols

Symbol	Description						
*	Component interchangeable with Etabloc						
0	Components differ						
	When other frequencies or power reserves are required for this pump/motor combination, please contact KSB.						
•	This pump/motor combination is not possible.						

Table 23: Motor / power

Power						
/024,/034						
/054,/074						
/114,/154						
/224,/304						
/404						
/554,/754						

⁹ The components of Etaline single and twin pumps are identical except for the volute casing.

Motor	Power
160	/1104,/1504
180	/1854,/2204
200	/3004
225	/3704
250	/5504

Etaline Z 51 of 64

8 Trouble-shooting

MARNING

Improper work to remedy faults

Risk of injury!

▶ For any work performed to remedy faults, observe the relevant information given in this operating manual and/or in the product literature provided by the accessories manufacturer.

If problems occur that are not described in the following table, consultation with the KSB service is required.

- A Pump delivers insufficient flow rate
- **B** Motor is overloaded
- C Motor protection switch / thermistor trip device trips the unit
- D Increased bearing temperature
- E Leakage at the pump
- **F** Excessive leakage at the shaft seal
- **G** Vibrations during pump operation
- H Impermissible temperature increase in the pump

Table 24: Trouble-shooting

				able 24. Houble-shooting						
Α	В	С	D	Е	F	G	Н	Possible cause	Remedy ¹⁰⁾	
X	-	-	-	-	-	-	-	Pump delivers against an excessively high pressure.	Re-adjust to duty point. Check system for impurities. Fit a larger impeller. 10) Increase the speed (frequency inverter).	
X	-	-	-	-	-	X	X	Pump and/or piping are not completely vented or primed.	1 1 1 1 1	
X	-	-	-	-	-	-	-	Supply line or impeller clogged	Remove deposits in the pump and/or piping.	
X	-	-	-	-	-	-	-	Formation of air pockets in the piping	Alter piping layout. Fit vent valve.	
X	-	-	-	-	-	X	X	Suction lift is too high/NPSH _{available} (positive suction head) is too low.	Check/alter liquid level (open system). Increase system pressure (closed system). Install pump at a lower level. Fully open the shut-off element in the suction line. Change suction line, if the friction losses in the suction line are too high. Check any strainers installed/suction opening. Observe permissible speed of pressure fall.	
X	-	-	-	-	-	-	-	Wrong direction of rotation	Check the electrical connection of the motor and the control system if any.	
X	-	-	-	-	-	-	-	Speed too low - Operation with frequency inverter - Operation without frequency inverter	- Increase voltage/frequency at the frequency inverter in the permissible range Check voltage.	
X	-	-	-	-	-	X	-	Wear of internal components	Replace worn components by new ones.	
-	X	-	-	-	-	X	-	Pump back pressure is lower than specified in the purchase order.	Re-adjust to duty point. In the case of persistent overloading, turn down impeller. ¹⁰⁾	
-	X	-	-	-	-	-	-	Density or viscosity of fluid handled higher than stated in purchase order	Consult the manufacturer.	

Pump pressure must be released before attempting to remedy faults on parts which are subjected to pressure.

Α	В	С	D	Ε	F	G	Н	Possible cause	Remedy ¹⁰⁾	
-	-	-	-	-	X	-	-	Use of unsuitable shaft seal materials	Change the material combination. 10)	
-	X	X	-	-	-	-	-	Speed too high	Reduce speed. ¹⁰⁾	
-	-	-	-	X	-	-	-	Tie bolts/sealing element defective	Fit new sealing element between volute casing and casing cover. Re-tighten the bolts.	
-	-	-	-	-	X	-	-	Worn shaft seal	Fit new shaft seal.	
X	-	-	-	-	X	-	-	Score marks or roughness on shaft sleeve		
-	-	-	-	-	X	-	-	Dismantle to find out.	Correct. Fit new shaft seal, if required.	
-	1	-		-	X	-	-	Vibrations during pump operation	Correct the suction conditions. Re-balance the impeller. Increase pressure at the pump suction nozz	
-	1	-	X	-	X	X	-	Pump is warped or sympathetic vibrations in the piping.	Check the piping connections and secure fixing of pump; if required, reduce distances between the pipe clamps. Fix the pipelines using anti-vibration material.	
-	-	-	X	-	-	-	-	Increased axial thrust	Clean balancing holes in the impeller. Replace the casing wear rings.	
-	-	-	X	-	-	-	-	Insufficient or excessive quantity of lubricant or unsuitable lubricant.	Top up, reduce or change lubricant.	
X	X	-	-	-	-	-	-	Motor is running on two phases only.	Replace the defective fuse. Check the electric cable connections.	
									Check the motor winding.	
-	-	-	-	-	-	X	-	Rotor out of balance	Clean the impeller. Re-balance the impeller.	
-	-	-	-	-	-	X	-	Defective bearing(s)	Replace.	
-	-	-	X	-	-	X	X	Flow rate is too low.	Increase the minimum flow rate.	
-	-	X	-	-	-	-	-	Incorrect setting of motor protection	Check setting.	
								switch	Fit new motor protection switch.	
-	X	X	-	-	-	-	-	Transport lock has not been removed from the shaft groove.	Remove.	

Etaline Z 53 of 64

9 Related Documents

9.1 Exploded view and list of components

9.1.1 Variant with bolted casing cover

[Supplied in packaging units only

Table 25: This view applies to the following pump sizes:

032-032-200 040-040-250 050-050-250 065-065-250 080-080-250 100-100-250 125-125-250 150-150-250 200-200-250 200-200-315

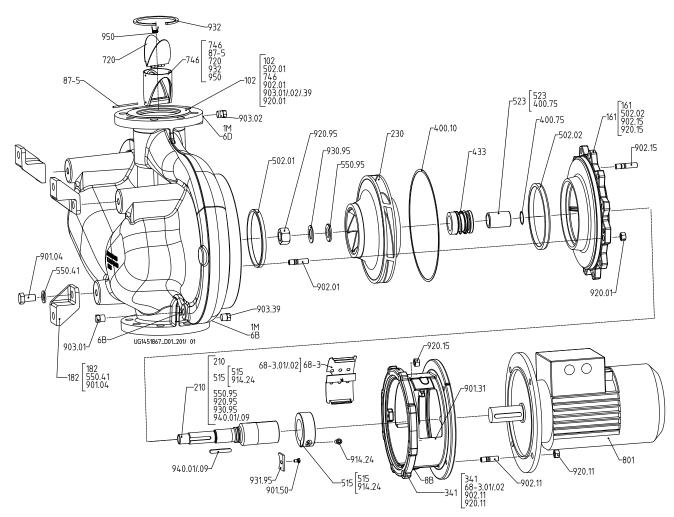


Fig. 11: Model with bolted casing cover

Table 26: List of components

Part No.	Description	Part No.	Description
102	Volute casing	87-5	Hinge pin
161	Casing cover	901.04/.31/.50	Hexagon head bolt
182	Foot	902.01/.11/.15	Stud
210	Shaft	903.01/.02/.39	Screw plug
230	Impeller	914.24	Hexagon socket head cap screw
341	Drive lantern	920.01/.11/.15/.95	Hexagon nut
400.10/.75	Gasket	930.95	Safety device
433	Mechanical seal	931.95	Lock washer
502.01/.02	Casing wear ring	932	Circlip
515	Taper lock ring	940.01/.09	Key
523	Shaft sleeve	950	Spring

Part No.	Description	Part No.	Description
550.41/.95	Disc 11)	Connections	
68-3.01/.02	Cover plate	1M	Pressure gauge
720	Fitting	6B	Fluid drain
746	Changeover flap valve	6D	Fluid priming and venting
801	Flanged motor	8B	Leakage drain

9.1.2 Variant with clamped casing cover

[Supplied in packaging units only

Table 27: This view applies to the following pump sizes:

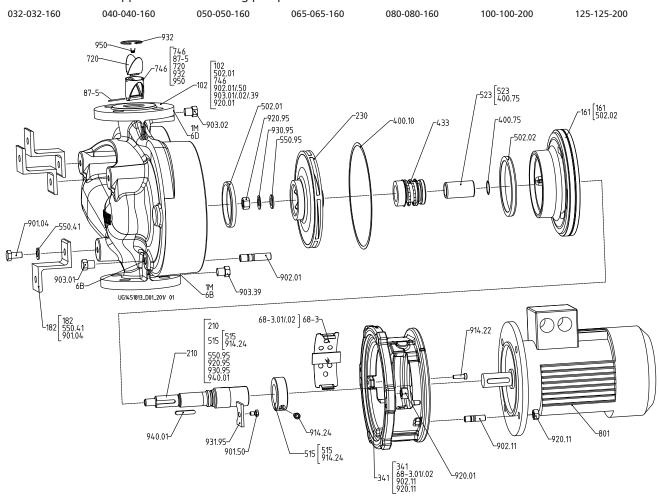


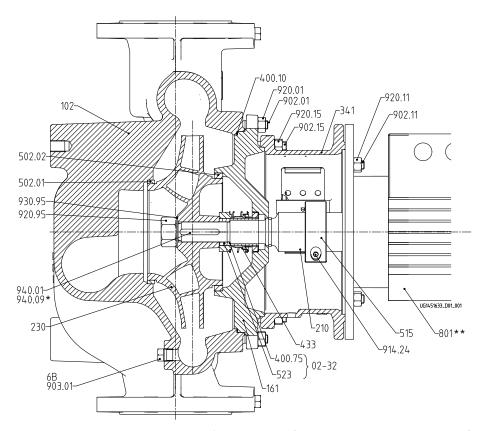
Fig. 12: Variant with single mechanical seal and clamped casing cover

Table 28: List of components

Part No.	Description	Part No.	Description
102	Volute casing	87-5	Hinge pin
161	Casing cover	901.04/.50	Hexagon head bolt
182	Foot	902.01/.11/.50	Stud
210	Shaft	903.01/.02/.39	Screw plug
230	Impeller	914.22/.24	Hexagon socket head cap screw
341	Drive lantern	920.01/.11/.95	Hexagon nut
400.10/.75	Gasket	930.95	Lock washer
433	Mechanical seal	931.95	Lock washer
502.01/.02	Casing wear ring	932	Circlip

¹¹ For shaft unit 25 only

Part No.	Description	Part No.	Description
515	Taper lock ring	940.01	Key
523	Shaft sleeve	950	Spring
550.41/.95	Disc 12)		
68-3.01/.02	Cover plate	Connections	
720	Fitting	1M	Pressure gauge
746	Valve disc	6B	Fluid drain
801	Flanged motor	6D	Fluid priming and venting


¹² For shaft unit 25 only

9.2 General assembly drawing with list of components

Table 29: This view applies to the following pump sizes with bolted casing cover:

032-032-200 040-040-250 050-050-250 065-065-250 080-080-250 100-100-250 125-125-250 150-150-250 200-200-250 200-200-315

Fig. 13: General assembly drawing (* Second key for WS 55 only; ** With motor foot from motor size 132)

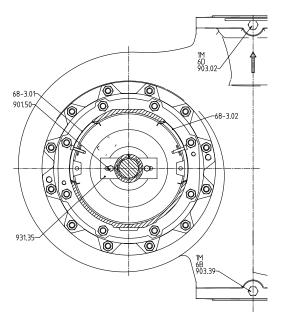


Fig. 14: General assembly drawing: side view

Etaline Z 57 of 64

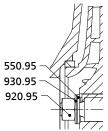


Fig. 15: Fastening elements for the impeller, WS 25

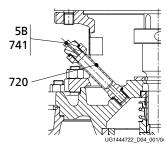


Fig. 16: Vent valve 5B

Table 30: This view applies to the following pump sizes with clamped casing cover:

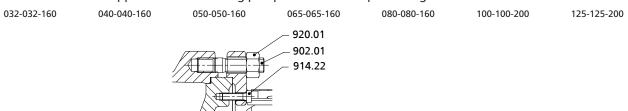


Fig. 17: Fastening elements for the clamped casing cover

Table 31: List of components

Part No.	Description	Part No.	Description
02-32	Spare shaft protecting sleeve/ gasket assembly	68-3.01/.02	Cover plate
102	Volute casing	720	Fitting
161	Casing cover	741	Vent valve
210	Shaft	801	Flanged motor
230	Impeller	901.50	Hexagon head bolt
341	Drive lantern	902.01/.11/.15	Stud
400.10/.75	Gasket	903.01/.02/.39	Screw plug
433	Mechanical seal	914.22/.24	Hexagon socket head cap screw
502.01/.02	Casing wear ring	920.01/.11/.15/.95	Hexagon nut
515	Locking ring	930.95	Safety device
523	Shaft sleeve	931.35	Lock washer
550.95	Disc 13)	940.01/.09	Key

Table 32: Connections

Part No.	Description	Part No.	Description
1M	Pressure gauge	6B	Fluid drain
5B	Vent, mechanical seal chamber	6D	Fluid priming and venting

¹³ For shaft unit 25 only

10 UK Declaration of Conformity

Manufacturer:

KSB SE & Co. KGaA Johann-Klein-Straße 9 67227 Frankenthal (Germany)

This UK Declaration of Conformity is issued under the sole responsibility of the manufacturer.

The manufacturer herewith declares that the product:

Etabloc, Etabloc SYT, Etaline, Etaline SYT, Etaline Z, Etachrom B, Etachrom L, Etanorm, Etanorm SYT, Etanorm V, Etaprime L, Etaprime B

KSB order number:
• is in conformity with the provisions of the following directives / regulations as amended from time to time
 Pump (set): Supply of Machinery (Safety) Regulations 2008
 Electrical components¹⁴⁾: The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012
The manufacturer also declares that
 the following harmonised international standards¹⁵⁾ have been applied:
- ISO 12100
– EN 809
Person authorised to compile the technical file:
Name Function Address (company) Address (street, No.) Address (post or ZIP code, city) (country)
Place, date
16)
Name
Function
Company

Address

Etaline Z 59 of 64

¹⁴ Where applicable

Apart from the standards listed here referring to the Supply of Machinery (Safety) Regulations 2008, further standards are observed for explosion-proof versions (Equipment and Protective Systems Intended for use in Potentially Explosive Atmospheres Regulations 2016) as applicable and are listed in the legally binding UK Declaration of Conformity.

¹⁶ A signed, legally binding UK Declaration of Conformity is supplied with the product.

11 Certificate of Decontamination

Type:	number /				
	number / item number ¹⁷⁾ :				
Deliver	ry date:				
Applica					
	andled ¹⁷⁾ :				
riulu II	andred 7.				
Please	tick where applicable ¹⁷):	^	•	
					<u>(!)</u>
	Corrosive	Oxidising	Flammable	Explosive	Hazardous to health
				**	
Serio	usly hazardous to health	Toxic	Radioactive	Bio-hazardous	Safe
Reason	n for return:17):				
Comme	ents:				
placing	g at your disposal.		ed, cleaned and decontami		
For ma	ng-drive pumps, the inn ed from the pump and	er rotor unit (impeller cleaned. In cases of co	, casing cover, bearing rin ontainment shroud leakago e piece have also been cle	g carrier, plain bearing, in e, the outer rotor, bearin	nner rotor) has been
For car	nned motor pumps, the	rotor and plain beari	ng have been removed fro for fluid leakage; if fluid h	om the pump for cleaning	
		ecautions are required precautions are requi	for further handling. red for flushing fluids, flu	id residues and disposal:	
	nfirm that the above dant legal provisions.	ata and information a	re correct and complete ar	nd that dispatch is effecte	 ed in accordance with the
	Place, date and sig	nature	Address	Co	ompany stamp
¹⁷ Re	quired field				

Index

C

D

Design 17

Dismantling 42

Event of damage 6

Exploded view 55

Ordering spare parts 49

Disposal 14

Drive 18, 20

Α

Applications 8

Bearings 18

Clearances 40

Commissioning 30

Direction of rotation 29

Auxiliary connections 27

Bearing temperature 39

Certificate of Decontamination 60

E

Density 35

Delisity 5.

Frequency of starts 34

ī

Impeller type 18 Installation at site 21 Intended use 8

Interchangeability of pump components 50

K

Key to safety symbols/markings 7

M

Maintenance 38
Mechanical seal 30
Monitoring equipment 11

Ν

Name plate 17 Noise characteristics 20

0

Operating limits 33
Order number 6
Other applicable documents 6

Ρ

Partly completed machinery 6
Permissible forces at the pump nozzles 25
Piping 24
Preservation 13, 36
Product code 15
Product description 15
Pump casing 18

R

Reassembly 42, 44 Return to supplier 13 Returning to service 36

S

Safety 8
Safety awareness 9
Scope of supply 20
Shaft seal 18
Shutdown 36
Spare part
Ordering spare parts 49
Spare parts stock 49
Start-up 32
Storage 13, 36

Т

Temperature limits 11 Tightening torques 48 Transport 12

W

Warnings 7
Warranty claims 6

